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PLAN DU COURS

• En montrant des exemples de mesures sur des neurones du cerveau où les suites de signaux observés présentent à la fois
un comportement ponctuel et fortement discontinu mais d’amplitude quasi-constante, et un comportement aléatoire dans
le temps, ce cours débutera par une brève présentation des attendus biologiques du RNN, le modèle de réseau neuronal
aléatoire.

• C’est la justification biologique pour le modèle que nous avons proposé qui comprend des signaux ponctuels d’amplitude
constante mais se produisant à des suites d’instants aléatoires.

• Nous en développerons ensuite un modèle Markovien de l’état du système, représenté par le potentiel interne de chacune
des cellules du réseau [1], [2].

• L’interconnexion entre les cellules sera représenté par leurs probabilités d’interconnexion par des signaux excitatoires
(impulsions positives) et inhibitoires (impulsions négatives).

• Nous présenterons ensuite la mise en équation du modèle de réseau contenant n cellules, par ses “équations maı̂tresses”
ou les équations de Chapman-Kolmogorov [3].

• Ceci débouchera alors sur le thérème fondametal qui établit que – même pour un système récurrrent – la solution
stationnaire du modèle est en forme produit: nous montrons que la distribution stationnaire exacte est le produit des
distributions marginales des états de de chaque cellule.

• Par contre les solutions marginales s’obtiennent par un système équation non-linéaires de champs moyen que nous
développerons en souiignant l’existence et l’uniciteé de la solution et son calcul par une itération de point-fixe non-
linéaire [4].

• Des généralisations seront soulignées pour des modèles ayant des classes multiples de signaux [5].
• On abordera alors la question d’apprentissage et, pour un RNN récurrent, nous exhibons un algorithme d’apprentissage

de type “gradient” dont la complexité ne dépasse pas O(n3), où n est le nombre de cellules ou de neurones [4].
• Dans la cas particulier d’un réseau RNN non-récurrent, c’est-à-dire “feedforward”, nous montrerons que l’algorithme

d’apprentissage de type “gradient” est de complexité O(n2).
• Plusieurs exemples pratiques de ces techniques seront ensuite développés: apprentissage de textures [6], reconnais-

sance d’anomalies de nature tumorale dans des images de résonance magnétique [7], autres applications de la détection
d’anomalies [8], compression d’images [9], routage dans les réseaux à commutation par paquets [10], [11], [12], [13],
optimisation combinatoire [14], simulation [15], [16], etc..

• La question de la puissance du modèle RNN sera aussi abordée et nous montrerons comment il agit en tant qu’outil
d’approximation de fonctions continues et bornées [17].

• Ces résultats serons ensuite étendus à des techniques de “Deep Learning”, avec des exemples d’application.
• Nous soulignerons aussi quelques généralisations mathématiques qui ont mené à la théorie des “G-Networks” [18], [19],

[20], [21], [22] et leurs applications aux réseaux de régulation génétique [23], aux énergies renouvelables [?].
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[15] E. Gelenbe, E. Şeref, and Z. Xu, “Simulation with learning agents,” Proceedings of the IEEE, vol. 89, no. 2, pp. 148–157, 2001.
[16] E. Gelenbe, K. Hussain, and V. Kaptan, “Simulating autonomous agents in augmented reality,” Journal of Systems and Software, vol. 74, no. 3, pp.

255–268, 2005.
[17] E. Gelenbe, Z.-H. Mao, and Y.-D. Li, “Function approximation with spiked random networks,” Neural Networks, IEEE Transactions on, vol. 10, no. 1,

pp. 3–9, 1999.
[18] E. Gelenbe, P. Glynn, and K. Sigman, “Queues with negative arrivals,” Journal of applied probability, pp. 245–250, 1991.
[19] E. Gelenbe, “G-networks with triggered customer movement,” Journal of Applied Probability, pp. 742–748, 1993.
[20] J.-M. Fourneau, E. Gelenbe, and R. Suros, “G-networks with multiple classes of negative and positive customers,” Theoretical Computer Science, vol.

155, no. 1, pp. 141–156, 1996.
[21] E. Gelenbe, “G-networks: a unifying model for neural and queueing networks,” Annals of Operations Research, vol. 48, no. 5, pp. 433–461, 1994.
[22] ——, “Search in unknown random environments,” Physical Review E, vol. 82, no. 6, p. 061112, 2010.
[23] ——, “Steady-state solution of probabilistic gene regulatory networks,” Physical Review E, vol. 76, no. 3, p. 031903, 2007.
[24] E. Gelenbe and E. T. Ceran, “Energy packet networks with energy harvesting,” IEEE Access, vol. 4, pp. 1321–1331, 2016.


