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PLAN DU COURS

En montrant des exemples de mesures sur des neurones du cerveau ou les suites de signaux observés présentent a la fois
un comportement ponctuel et fortement discontinu mais d’amplitude quasi-constante, et un comportement aléatoire dans
le temps, ce cours débutera par une breéve présentation des attendus biologiques du RNN, le modele de réseau neuronal
aléatoire.

C’est la justification biologique pour le modele que nous avons proposé qui comprend des signaux ponctuels d’amplitude
constante mais se produisant a des suites d’instants aléatoires.

Nous en développerons ensuite un modele Markovien de I’état du systéme, représenté par le potentiel interne de chacune
des cellules du réseau [1], [2].

L’interconnexion entre les cellules sera représenté par leurs probabilités d’interconnexion par des signaux excitatoires
(impulsions positives) et inhibitoires (impulsions négatives).

Nous présenterons ensuite la mise en équation du modele de réseau contenant n cellules, par ses “équations maitresses”
ou les équations de Chapman-Kolmogorov [3].

Ceci débouchera alors sur le théréme fondametal qui établit que — mé&me pour un systeme récurrrent — la solution
stationnaire du modele est en forme produit: nous montrons que la distribution stationnaire exacte est le produit des
distributions marginales des états de de chaque cellule.

Par contre les solutions marginales s’obtiennent par un systeme équation non-linéaires de champs moyen que nous
développerons en souiignant I’existence et 1’uniciteé de la solution et son calcul par une itération de point-fixe non-
linéaire [4].

Des généralisations seront soulignées pour des modeles ayant des classes multiples de signaux [5].

On abordera alors la question d’apprentissage et, pour un RNN récurrent, nous exhibons un algorithme d’apprentissage
de type “gradient” dont la complexité ne dépasse pas O(n?), ol n est le nombre de cellules ou de neurones [4].

Dans la cas particulier d’un réseau RNN non-récurrent, c’est-a-dire “feedforward”, nous montrerons que 1’algorithme
d’apprentissage de type “gradient” est de complexité O(n?).

Plusieurs exemples pratiques de ces techniques seront ensuite développés: apprentissage de textures [6], reconnais-
sance d’anomalies de nature tumorale dans des images de résonance magnétique [7], autres applications de la détection
d’anomalies [8], compression d’images [9], routage dans les réseaux a commutation par paquets [10], [11], [12], [13],
optimisation combinatoire [14], simulation [15], [16], etc..

La question de la puissance du modele RNN sera aussi abordée et nous montrerons comment il agit en tant qu’outil
d’approximation de fonctions continues et bornées [17].

Ces résultats serons ensuite étendus a des techniques de “Deep Learning”, avec des exemples d’application.

Nous soulignerons aussi quelques généralisations mathématiques qui ont mené a la théorie des “G-Networks” [18], [19],
[20], [21], [22] et leurs applications aux réseaux de régulation génétique [23], aux énergies renouvelables [?].
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