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Complex and seemingly stochastic patterns of neuronal discharge
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Characterization of “noisy”
network activity in vivo:
High-conductance states
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Multiscale analysis

Integrative properties of single neurons
during High-Conductance states
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How stochastic is neuronal activity in the
awake brain ?

What type of dynamics does it follow ?




Utah-array recordings
IN humans

Peyrache et al, PNAS, 2012

Human ensemble recordings
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Human ensemble recordings
RS/FS cells 4 B

monosynaptic - | _ *
connections 1 ol B ﬂ I

1 a0
50
oL ;

=50

Hate (Hz)

0 o 10
Tirme shift ims) Time shift {ms)

o

R
=]
M ol Eynapies

Excitation

2
=]
Fost-aynaptic call
b
o

peak to valay (ms)

jac)
=]

Irhibition

l‘l' -
-y : '."'l.

0.3 0.7 20 40 60
half Peak YWidth (ms) Pre-synaphc cell

Peyrache et al, PNAS, 2012




Human ensemble recordings

RS/FS correlations
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Human ensemble recordings

RS/FS correlations
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Human ensemble recordings

Irregular activity (awake subjects)
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Multiunit extracellular recordings in awake cats

Wake Apparent stochastic dynamics!
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Multiunit extracellular recordings in awake cats

Wake Apparent stochastic dynamics!
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Avalanche analysis from human neurons

Avalanche analysis in wakefulness (log-linear)
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Multiunit extracellular recordings in awake cats

Statistics of spike patterns in cat parietal cortex

Uncorrelated Correlated
Siza of the patterns: 8 x 1, DJS=0.17673 z Siza of the patterns: 8 ¥ 1. 0JS=0.0017531
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High-conductance states
at the cellular level




Intracellular characterization of network activity in vivo

Intracellular recordings
in parietal cortex
of awake and sleeping cats
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Conductance measurements in vivo
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Characterization of up-states in vivo by TTX microdialysis

Microperfusion of TTX in cat parietal cortex
under ketamine-xylazine anesthesia

ksl Before TTX After TTX

recording

|‘I[}m‘\f

Average Average

— s

Paré et al., J. Neurophysiol. 1998
Destexhe et al., Nature Reviews Neurosci. 2003




Characterization of up-states in vivo
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Characterizing neuronal activity

Summary of measurements
of neuronal activity
In awake animals

Synaptic activity is intense and noisy,
essentially Gaussian distributed (both
for Vm and conductances)

Responsible for a “high-conductance state”
(3 to 5-fold larger than resting conductance)

Statistics of neuronal activity is very close
to Poisson processes




Modeling high-conductance states
in cortical neurons




Computational models of SBA

Reconstructed neocortical pyramidal neurons with synaptic
densities estimated from morphological measurements

Total synapses:
16% inhibitory
84% excitatory

Spine density:
(dendrites > 40 pum from soma)
0.6 spines per pm?

GABAergic synapses on the soma:
10.6 + 3.7 per 100 um?

Total GABAergic synapses:
7% on soma
93% in dendrites

DeFelipe & Farifias, Prog. Neurobiol. (1992);
Larkman, Comp. Neurol. (1991)




Estimation of the release parameters of SBA

1. Calibration of the model to
miniature synaptic events
recorded intracellularly

in vivo

2. Adjustment of release
rates to active states recorded
iIntracellularly

in vivo => Rin, <Vm>, o,
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Single-cell models of high-conductance states
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Constraining release
parameters of the model
to simulate periods of
iIntense synaptic activity

Change in release frequency can
account for the experimentally
observed R,, decrease but not for
the standard deviation of V

Several combinations of conduc-
tance and release frequencies
could yield correct R,, decrease
but failed to reproduce o,

Introducing a correlation between
release events led to correct R,
and o,




What are the consequences of
high-conductance states on

neuronal integrative properties ?




Consequence 1: neurons are probabilistic devices
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Consequence 2: Enhanced responsiveness
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Enhanced responsiveness
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Dynamic-clamp




Consequence 5: noise modulates intrinsic properties

The non-linear properties of thalamocortical cells

Low threshold Ca 2+(IT)

Hyperpolarization

Wolfart et al., Nature Neurosci, 2005




Interaction between Models and Living Cells
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“Controlling synaptic noise”:
Real-time injection of stochastic

synaptic conductances
(dynamic-clamp)




The Dynamic-clamp
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The Dynamic-clamp

inj

Intracallular
recarding

RT-NEURON is developed by
Gwen LeMasson, University of Bordeaux
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Effect of synaptic noise on intrinsic properties

Synaptic background activity mixes single spike
and burst responses in thalamocortical cells
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Effect of synaptic noise on intrinsic properties

Equalization of spike probabilities
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Effect of synaptic noise on intrinsic properties

Equalization of spike probabilities
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Consequences on integrative properties

Conclusions

Central neurons are probabilistic devices
due to the presence of synaptic noise

Enhanced responsiveness (small inputs give a
non-zero probability of response)
Confirmed experimentally by dynamic-clamp

Equalization of synaptic efficacies (probability of
axonal spike initiation is weakly location dependent)

Sharper temporal processing

Intrinsic properties are different in the presence of
synaptic noise (ie, under in vivo conditions...)




Enhanced responsiveness at the
network level ?




Enhanced responsiveness
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Enhanced responsiveness at the network level

Synaptic background activity enhances the detection of synaptic
iInputs at the network level
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Ho & Destexhe,
J Neurophysiol. 2000




Network models of self-sustained irregular states

Networks of IF neurons

Excitatory
population
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Network models of asynchronous irregular states

Networks of IF neurons
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Self-sustained asynchronous irregular states

Networks of
IF neurons
(conductance-based)
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Self-sustained asynchronous irregular states

Networks of
IF neurons
(conductance-based)
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Analysis of Al states

IS] distributions
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Avalanche analysis
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El Boustani et al.,
J Physiol Paris, 2007




Conductance
distributions
In the Vogels-
Abbott (2005)
model

Number of cells
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Analysis of Al states

El Boustani et al.,
J Physiol Paris, 2007




Conductance
distributions
In the Vogels-
Abbott (2005)
model
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Analysis of Al states

20 times

too many!

El Boustani et al.,
J Physiol Paris, 2007




Analysis of Al states
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J Physiol Paris, 2007
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Analysis of Al states
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Analysis of Al states
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Network responsiveness
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Network responsiveness
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Network responsiveness
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Network responsiveness
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Consequences on integrative properties

—_— 55
w— VA-2005

Conclusions

Enhanced responsiveness can be found at the
network level...

" ... butonly if neurons are in a conductance state
consistent with experiments
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Neuronal

Dynamic-Clamp

Reading material

Review articles:

- Scholarpedia article on "High-conductance states" (open

access; many articles available, such as “dynamic-clamp”,
“neuronal noise”, etc)

- Destexhe et al. The high-conductance state of neocortical

neurons in vivo, Nature Reviews Neuroscience, 2003.

Books:

- Dayan & Abbott, Theoretical Neuroscience (MIT Press,

2001)

- Koch, Biophysics of Computation (Oxford UP, 1999)
 Destexhe & Rudolph, Neuronal Noise (Springer, 2012)
- Destexhe & Bal (Eds), Dynamic Clamp (Springer, 2009)




