Lecture 2

Activity-based
Overview of Neuron Modeling: System Abstraction, Composition, and Search Learning

Combined

Fast Discrete / I
Event Nets
Markov

Thorpe Neuron
One-spike-per- Markov / Populations

McCullough neuron Stochastic

Pitts: Logic / Neurons
/ Leaky
\ Integrate &

Eire
Hodgkin-
Huxley é.\°°
M(&EI <
A lot is left out — “right” means
hopefully the right for the intended
stuff is retained purpose

Taxonomy of Levels and types of DEVS Neuron Models

Discrete Event abstraction, One spike
per neuron, fast non-deterministic
—— Small circuit oriented processing within available time

—— Neuron Basic models = atomic models of different types: decay neuron, simple threshold neuron

——"“Neural Circuits” = coupled model with Neuron models as components specific coupling,
e.g. decision of arrival order of inputs

Provide numbers needed for statistical
confidence — deterministic aggregation of
probabilistic input

Population oriented

—— Neuron models = atomic models of different types: fire once, refractory spike generator, etc

—— Cell Assembly = coupled model with Neuron models as components and all to all coupling,
e.g. net of fire once neurons

— Cell AssemblyComposite = coupled model with Cell Assembly as components and specific coupling, e.g., AndOr Ne

Combine fast probabilistic and slower

—— CombinedMultiType deterministic processing

L Neuron models = from both families

—Brain” Models - coupled model with Neuron models, Neural circuits and Cell Assemblies as components

DEVS Formalism

 The DEVS (Discrete Event Systems Specification) formalism provides a way of expressing discrete event
models

e DEVS is universal for discrete event dynamic systems and is capable of representing a wide class of other
dynamic systems

* Universality for discrete event systems is defined as the ability to represent the behavior of any discrete
event model where “represent” and “behavior” are appropriately defined

e Concerning other dynamic system classes, DEVS can exactly simulate discrete time systems such as cellular
automata and approximate, as closely as desired, differential equation systems

* DEVS closure under coupling supports hierarchical modular construction and composition methodology

e Bottom-up methodology keeps incremental complexity bounded and permits stage-wise verification since
each coupled model “build” can be independently tested

Discrete Event Abstractions

boundary |

/’:’ event

Time | - Time
fo cross | -~ terval |

Discrete 1€ e € Eventsand
Event spacing carry
Time , information

Segment 1 T

How continuous trajectories are abstracted into
time-indexed events

An abstraction is a formalism that attempts to
capture the essence of a complex phenomenon
relative to a set of behaviors of interest to a modeler

A discrete event abstraction represents dynamic
systems through two basic elements: discretely
occurring events and the time intervals that separate
them

It is the information carried in events and their
temporal separations that DEVS employs to
approximate arbitrary systems

In the quantized systems approach next events are
boundary crossings and the details of the trajectories
from one crossing to another are glossed over with
only the time between crossings preserved

Abstraction of Spike to Pulse

+30 r Na'’channels 0
become
—refractory;
no more Na*
enters cell Na*channels
= become refractory,
> no more Na* enters
E . cell
s I K* channels
T open, K*
g begins to
% leave the cell
B
e
S
z A
@ Na' channels
= R
open, Na
begins to
enter cell K* channels close,
. Na* channels reset
...... B sssanasersassensvserndese LIDIE
ThHold
- 2

Stimulus

Extra K* outside
diffuses away

Boundary
Level

Height taken as 1

Width taken as
zero

Time of Occurrence

v

Predictor Objective: Verify that LIF Neuron response to pulse input
trajectory can be approximated by segmentation and counting of pulses
within segments

A
X

Segmentation by length
of CountWindow

X1

|

Ko X3 Xy X5 X X7
CoﬁntWindow =— In(.01)
DecayRate
EffectiveFraction = _ L
CountWindow™* DecayRate
Threshold

EffectiveThreshold =

EffectiveFraction

Count the number of pulses in
window; if it is bigger than
threshold output pulse (take into
account that decay reduces the

P of o L I T T [

Segmentation-Based
Predictor

v

|

Predict pulse at end of segment if
Pulses > EffectiveThreshold

FiringRates

0.012 {5 C E— C — JE— T —

Segmentation =

0.008 (IS R S S Ty i oy i T

verification R N

0.005 {[iE= e s

0.004 {[{IS S S S S S reeeoeeh s e
0.003 {[{E o e
0.002 {[{E e R e T R—
0.001 {[iE== S S S i S i e N
0.000 ' ' ' ' ' ' ' ' ' ' ' ' '

1,000 2,000 3,000 4,000 5,000

6,000 7,000 8000 9000

Time

10,000 11,000 12,000 14,000 15,000 16,000 17,00

| LeakyINFreRate -#PredictedFreRate|

Derivation => Proof of Mapping (Behavior Morphism)

Derivation:
e—CountWindokaecayRate — 01
— CountWindow* DecayRate
Fire if:
=—In(.01
(_) _ #Pulses x Ef fectiveFraction > Threshold
EffectiveFraction Threshold
CountWindow . R < #Pulses > - -
AreaUnderDecayCurve _[O g e o #Pulses > Eb}];f eit.weTI;lmczo?d
= = . ulses ectiveThresho
AreaOfNoDecay 1*CountWindow l
1— e—CountWindow*DecayRate Threshold
EffectiveThreshold = , ,
DecayRate 1 Ef fectiveFraction

B CountWindow ~ CountWindow* DecayRate

Propagating Parameter Values

Threshold = EffectiveFraction * EffectiveThreshold

Compute
Threshold, knowing
Effective Fraction
Derive Infer and Effective
Threshold

Identify this value
by fitting Lumped
EffectiveThreshold Model to data.

Morphism from Neuron with Bursty input segments to simple I/O DEVS model

Bursty

Segmentation

X1

Xo X3 Xy EE- Xg X7

Neuron Model K
‘ (Leaky IntegrateNFire, |

Or Markov version)

-

!

t

Map: Base Segment to Lumped Segment
1 1 1 Length Lumped = Length Base

¢ Rate ... =#Pulses/Lengthg,

|

v

Null
Segment
(rate = 0)

Length of null segment
long enough so neuron
Goes back to ground

state

Burst

Segment

(rate > 0)
Length of burst
segment long enough
SO neuron
Reaches steady state

Simple DEVS /O Model | ™)

X2 X3 Xg
! i
! '

Rate’ =F(Rate)

|

F: See next slide

»

Sim

F(Input Firing Rate)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Firing Rate of DEVS Markov Neuron

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rate

Simple
I/O DEVS
Model

0.25

0.15

nle 1/O DEVS Model: Output Firing Rate =

Firing Rate of Leaky Integrate and Fire

Rate’ =F(Rate)

\

Lengths are
preserved; values
are mapped via F

PoissonToBurstSegmenter (to SimplelODEVS) Test

ReceivedMull
ecenediu] ¥ PoissonToBurstSegmenter

ta=0
? EndOfty
WaitForlnput | EnclOftull wEndOfBurst| SimplelODEVS (outEndOfBurst
ta = Infinity i
~EndOfBurst aDul BurstSegmenter
| EndOfBurst LUSE (WaitForFirstPulse) outEndOfG outEnd OfBur. |
outEnd OfMu
ReceivedBurst
o {(outEndOfBurst: 1.081197243347752}

CountBasedBurstyGenerator_SpikeGenerator outPu
(stated) outStateMame

EndOfNullSegment . StartNewBurstSegment
ta=10 ! EndOftull ta = infini \

? Pulse ? Pulse

/

StoreNewBurstWidth
ta=0

WaitForFirstPulse
ta = infini

1EndCfBurst

AddToBurst
ta=0

WaitForNextPulse
ta = "BurstWidth"

Quantization

Quantization Principle

Send new element only when significantly different from last sent element

*Difference: to measure change from one item to

the next

*Quantum: to determine the minimum size of change

for significance

F——n»
e
—»

v

difference (new element.last sent) > quantum)

-

quantizer

last sent
data element

For images: enough pixels have to differ in enough RGB color value

The generalized Quantization Principle

v

Quantization is a general process for extracting
information from a continuous stream of data

Any differential equation system can be approximated as
closely as desired using quantization- alternative to
conventional numerical integration

In distributed simulation, quantization is a basic filtering
technique in which continuously changing state variables,
such as positions and velocities, of one component are
only transmitted to other “subscriber” components over
the network, when their changes exceed a threshold level
called a quantum

Such quantum threshold crossings are the events and the
intervals between them can be predicted so that the
overall behavior can be produced by discrete event (and
in particular DEVS) abstractions of the components

The larger the gquantum, the fewer the state updates that
are “published,” but also the greater the potential
deleterious effect of the message reduction on simulation
accuracy

For many behaviors, the tradeoff of fidelity versus
message reduction is very favorable — allowing available
bandwidth to be utilized much more efficiently with
minimal impact on fidelity

Fast Discrete Event Nervous System Architectures

* Many features of biological neurons are not represented in conventional artificial neural networks

* “One-spike-per-neuron” refers to information transmission from neuron to neuron by single pulses (spikes) rather than
pulse trains or firing frequencies

* A face recognition multi-layered neural architecture based on the one-spike, discrete event principles has been
demonstrated to
* conform to the known time response constraints of human processing and
* To execute computationally much faster than a comparable conventional artificial neural net

* The distinguishing feature of the one-spike neural architecture is that it relies on a temporal, rather than firing rate, code
for propagating information through neural processing layers

* This means that an interneuron fires as soon as it has accumulated sufficient “evidence” and therefore the latency to the
first spike codes the strength of this input

* Single spike information pulses are thus able to traverse a multi-layered hierarchy asynchronously and as fast as the
evidential support allows

I”

* Thorpe has shown that “act-as-soon-as-evidence-permits” behavior can be implemented by “order-of-arrival” neurons
* have plausible real world implementations?
* coding which exploits firing order is much more efficient than a firing-rate code which is based on neuron counts

* isinvariant with respect to overal input intensity level because latencies are uniformly affected by such changes

Strength-to-Latency Coding

* The basic concept that supports discrete event abstraction of neural behavior is
strength-to-latency coding

* The strength of the input of an evidence gathering neuron (such as sensory
neuron) is coded in the latency of its output response for downstream neurons

* The greater the stimulation of an input volley (evidence) the quicker the
generation of a corresponding output spike

* Thus a neuron with lots of evidentiary support will be “heard” earlier by neurons
in the next processing layer than one with low or no input strength

Order-of-Arrival Neurons

B Order-of-Arrival neurons . Dlsper5|9p in latencies sets the _stage for_neurons that
. O Let the input lines @1..@4 have increasing weights. If, are sensitive to the order of arrival of spikes
L_, as mn a), stimulation on these lines amives in this same
a3 * order then the activation mlghr‘mcreme with each e An input train arrives on the input lines in the order of
— A amval and a pulse generated after the last amval,
a | their weights accumulates maximum activation and
If. as in b). the order of arrival does not agree with may cause the neuron to fire if this exceeds the
Weisht that of the weights. activation may not build up
mﬁﬁcazml-.., ¢) sufficiently to cross the threshold and fire This is t h res h 0 l d
bctor < because the weights are uniformly decreased with)]
PTG each input amrival as in c). * Any other order of arrival will accumulate less
@ @ @ @ =z o activation and therefore, depending on the threshold
wm 11T 1 1 —_ ‘ l 1 level, may not generate an output spike
threshold ~ f . :
| e Thus the neuron can discriminate among different
— ” awaon order-of-arrivals of stimuli
oupet ‘ F * This ability to distinguish between N! Input patterns

(where N is the number of input wires) thus supports
a combinatorially more efficient information code
than one based on the number of stimulated input
wires rather than their order of stimulation

a) b)

End-to-End Processing Layers

The one-spike concept provides the basic building block in an “end-to-end” processing

system for small, fast reactive “nervous systems”
Alternative

cenmsors Fusion behavior Decision Action Have formulated the discrete event abstractions underlying the one-spike-per-neuron
R analysis candidates ' Sequencing Cruators concept, and expressed them in DEVS
This fits the definition of discrete event abstraction:
\\|'/ \"| / \ N 77N * events are threshold crossings which generate discrete spikes
\ | I'. .I
NEEVAN \ / /\/ ""'\._____. \\‘ * inter-event temporal separations include the latencies between input and output
\ » spikes
e \. \/ *n\/ / ™~ TN lllustrate a fast processing layered architecture,
S :' |) -') N
\ / __/ \) __/ \ * including all its sensory, cognitive, actuator and communication related components,
* within real time processing, memory and energy constraints
* the kinds of neurons that are found in each layer
Evidence Order-of-arrival First-arrival- Event-Based

takes-all
neurons

neurons neurons control

neurons

Sensory layer neurons react directly to incoming energy (in various forms such as visual or

infrared electromagnetic waves, sonar, etc.) These neurons perform the strength-to-latency

) An "end-to-end" layered architecture to establish neuron behavior requirements coding.

* Fusion/Analysis neurons fuse the data collected from the various sensors into some
stereotyped situations that can be further related to reactive courses of action: operate on
the order of-arrival principles above.

* Priming of alternative candidates for behavioral course of action is also done by order-of-
arrival neurons.

* Decision, i.e., selection from the candidates, is performed the by winner-take-all neurons.

* Action sequencing plays out the memorized sequence of actions associated with a selected
course of action and is done by event-based control neurons.

Synchronizing Between Layers

a b ¢
a T — —
\\.tl\/ \\.:' / \‘| |'/ \L______b
N N ./
a _
\ //\
L e ’_‘\\ b ' '_'\/ / "'_“\I
— Db |, | < (| [J
N A R __/

In temporal delay coding. laggard spikes from earlier frames may interfere with
spikes from later frames. e.g a is still around when b is mput

Laggard pulses in stength-to-latency information transmission

Using strength-to-latency
coding, operation is
asynchronous.

There is no global clock tick to
synchronize states of neurons
at a recurring time step.

Laggard spikes from earlier
percepts may interfere with
spikes stimulated by later
percepts.

One solution is to place a time-
out on the response of a
neuron -- it is reset to its initial
state after a given duration

DEVS Generic Neuron

e active e
/ duration \
/ _

e

| - Teset active

(oo —
receptive | Input ra
[-/JL - —--\y‘\'x- _—-’/ threshold

refract i
NS \E i
N counmlated mpu
4 recepii Input = Nggshold /" trechold
i"- tion '/ﬁ.re

~

" ﬁn.:_ng_ delay -
~ > external event

output —

% output event

Internal event

DEVS maodel of neurons satisfying the behavioral requirements

Model

- - Input must) ¢~ Delay m firing ™ - o
hlmu.mr amve accumulate within allows others E mt“ame_d]J'].Pm 1
within receptive active window | [to compete for next blocked in
window to get In . =P refractory phase
= 0 trigger oul “for upsiream sta - :
;o / e I
receptive |active fire | refractory

* We develop requirements for basic behavioral properties of DEVS
Neuron Models.

Inspired by the biological origins of discrete event neural
abstractions,

Are logically required in implementing the architecture.

* DEVS neurons

Have the ability to respond to order of arrival of external
events on their input ports

Controllable by passage of time, such as time windows and
time outs

Delay firing to enable competition in sending output to next
stage

Synchronizable through an external reset event.

The model has four main phases (control states): receptive,
refract, active and fire, each with an associated time
duration.

The actual durations are parameters of the model which
range from 0 to infinity.

Their assignments produce different specialized behaviors
that are derived from the generic model.

DEVS Generic Neuron Model Operation

 The model starts in the receptive phase.

* If an input arrives during the receptive period that is less than the threshold, then the
neuron enters the active phase, where it waits for further inputs.

 If accumulated input exceeds the threshold before the active period has expired, then
fire phase is entered.

. ﬁlso, ilf an above-threshold input arrives during receptive period, fire phase is entered
irectly.

« After a delay, an event (representing a pulse or spike) is produced on the output port.
» After firing, the model enters the refractory phase, where it is unresponsive to inputs.

* The active phase also times out to the refractory phase (if above threshold input is not
accumulated).

* The reset input, occurring during the refractory period, puts the model back to the
receptive phase.

DEVS Generic Neuron Model Behaviors

* The generic model can be specialized to realize the behaviors of the following:

» Evidence Neurons (at the sensory layer) — Physiologically, these have been identified as “integrate
and-fire” neurons and represented as leaky integrators with threshold-based firing.

* With constant inputs arriving periodically, an output will be generated once the threshold has
been reached.

* The outputo\oeriod is inversely related to the strength of the input thus implementing the analog-
to-delay coding discussed earlier.

. Ora{gr—or—Arrival Neurons — these are implemented with appropriate weight settings as discussed
earlier.

» Winner-Takes-All (First-Arrival-Takes-All) Neurons — these neurons implement winner-take-all
behavior based on first arrival. Metaphorically, the neuron with the first sloike to arrive from the
previous processing stage, closes the door for pass through of later arrivals.

e This approach works much faster than conventional winner-take-all circuits. Using the generic DEVS neuron,

the lockout behavior can be accomplished by establishing mutual cross-inhibition (negative weights for inputs
from competing predecessors).

Event-based Control Neurons

—
—
e
o
=
=]
=}
2k
B E
5-—&
B E

[] [1 |
+—>

= time window
= feedback verification

%

If a neuron receives input from predecessor it emits action command and waits for
feedback verification If feedback from actuator is within the allowed time window,
the action sequence continues to the successor.

JEVS neuron implementation of event based control for output effectors

Neurons are connected in a series
to control a sequence of discrete
actuations forming a composite
action.

* |n event-based control,
verification feedback from the
current actuation (as in
proprioceptive feedback) is
required to fall within a time
window before the next action can
be activated.

* The realization by the generic
DEVS neurons employs the time-
out associated with the active
phase.

DEVS Neurons: Time, Space, and Energy
Constraints

* Space, time and resource constraints apply to real world information
processing by neuron systems.

* Use of numbers of neurons (space), order-of-arrival coding is much more
efficient than is rate-based coding.

* The "act-as-soon-as-evidence-permits" principle complies with the
demands of quick reaction under time pressure.

* Further the time-outs associated with phases can be linked to limitations
on the energy consumption necessary to maintain active states.

* Likewise the refractory phase can be associated with minimal energy
consumption (or restoration of energy in the biological case).

* The underlying DEVS abstraction, concentrating on events and their timing,
is efficient in both processing and communication.

Efficiency of Discrete Event Simulation

intemnal events
Joutputs, rate=v_

1 1]

ec e DEVS (asynchronous)
updating scales as CN

external events

‘mputs. rate =NC v _, fized time step (synchronous)

updating which scales as (CNYF

e ‘
= T

At = = v

DEVS Network to illustrate efficiency of discrete event simulation

An event-driven approach was taken for large-scale simulations of recurrent neural
networks of spiking neurons and plastic synapses.

The approach exploits the fact that the dynamic variables of both neurons and
synapses evolve deterministically between any two successive spikes -- thus tracking
the arrival of spikes enables unequivocal prediction of neural dynamics.

Compared with conventional synchronous simulation. The result is a drastic reduction
of the computational load per neuron which grows linearly with the number of neurons
is only about 6% more with variable synapses.

Place simulation complexity comparison in the context of the more fundamental
discrete event conceptual framework.

Discrete event abstraction can retain essential state and timing information while
abstracting away details in underlying continuous trajectories.

Let there be N components, each sending outputs to an average of C receivers.

Such outputs, generated at internal state transitions, are assumed to be described by a
Poisson process with rate, v;.

Under random connectivity conditions, every component receives inputs at the rate,
Vo= CN* v,

A DEVS simulator only computes updates at internal and external events.

At each component these occur at the combined rate v =, v;, * v,,. = (1+CN) , v;,, a
linear dependence on N (again assuming validity of the Poisson assumption).

Computation with Pulsed Neural Networks:
Shortest Path Solvers

 Computational capabilities of hardware-based "pulsed” neural networks
* Does not take the full step toward discrete event abstraction

* A very simplified versions of the generic DEVS neurons provides shortest
path solutions to directed graphs.

* The shortest path in such a graph, whose arcs represent time durations,
can be regar ed as an abstraction of the "act-as-as-soon-as-evidence-
permits" processing in multilayer nets.

* |[n contrast, finding long paths cannot be done with the DEVS neuron.

* This suggests that an evolutionary explanation for the structure and
behavior of biological neurons if indeed they operate on discrete event
principles -- they are optimized for operation in a world requiring synthesis
of quick multi-step reactions as dictated by shortest paths in graphs of
dependent actions

Probabilistic Gene Network

i Network 1 ({Ny) S
| - -
i. i i > Ny
]
% - -/_!-r -
1] | 2
A T, ™
A Network 2 (Ng)
-
| > Na
LT —
]
% == A s
1] | 2

Figure 4: Two asynchronous state graphs (left) associated with interaction
oraph of Figure 2(a) on which we illustrate the construction of the probabilistic
gene network (right). The numbers labelling the transitions (right) correspond
to the numerator of Equation 2.

/Q

1]

I

S,

{lﬁ._'

2N

4N

2N

