
Reinforcement learning: an introduction and some
applications to spiking neurons

Frédérick Garcia

INRA Applied Mathematics and Informatics, Toulouse

November 29, 2019
Université Cote d’Azur, NeuroMod, Nice

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 2 / 135

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 3 / 135

Minicours objectives and contents

This course aims at introducing the Reinforcement Learning approach and
its application to learning in spiking networks.

Course 1 Introduction
Sequential decision making under uncertainty
Markov Decision Problems in finite and infinite horizons
Reinforcement Learning

Course 2 Generalization in Reinforcement Learning
Reinforcement Learning and Spiking Neural Networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 4 / 135

The problem of reinforcement learning
An autonomous agent exploring his environment, in order to learn a
behavior that maximizes the rewards he receives.

ENVIRONNEMENT

STRATEGIE

ACTIONS

OBSERVATIONS
+

RECOMPENSES

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 5 / 135

What types of applications ?

RL started with control problems, quite toy problems, like the mountain
car :

BUT

the car can accelerate in both directions
the goal is to reach the top of the hill, as fast as possible

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 6 / 135

What types of applications ?

Historically, and more recently, games :

checkers, backgammon
tetris
go, chess
arcade games (atari2600)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 7 / 135

What types of applications ?

Also very typical, autonomous robotics :

robotic arms, factory robotics
mobile robotics, autonomous car driving
humanoid robots

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 8 / 135

What types of applications ?

Recently, more serious applications :

allocation and scheduling of ressources
traffic light control
web system configuration
bidding and advertising
autonomous car driving
crop management

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 9 / 135

Twofold objective of RL

Control the systeme optimally
Learn this optimal policy by trial and error

First point well studied with the theory of optimal control and sequential
decisions under uncertainty (Hamilton-Jacobi-Bellman or Bellman
equations, 1954)

Reinforcement learning (Samuel 1959, Minsky 1964, Widrow 1973,
Holland 1975, Sutton 1984) is an extension of these works to the online
paradigm, for very large problems

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 10 / 135

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 11 / 135

decision theory

Decision theory is about human decision making in a world of incomplete
information.
In decision theory, a cognitive decision maker plays against a randomizing
nature.

Expected Utility (EU) theory, introduced by von Neuman and Morgenstern
in 1944, is the dominant theory of economic choice

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 12 / 135

decisions theory

The three fundamental concepts of decision theory are acts, states of
nature and outcomes.

Acts are under the control of the decision maker, who has to choose
one act from a given set of possible acts A = {a1, a2, ...aA}

States of nature are under the control of nature, and are
probabilistically selected by nature from a set S = {s1, s2, ...sS}. They
represent the circumstances about which there is uncertainty
When the act has been chosen and the state has been selected, the
outcome o = F (a, s) is determined, where F is the outcome mapping.
The set of possible outcomes is
O = F (A,S) = {F (a, s) | a ∈ A, s ∈ S}

Acts, states and outcomes can be complex objects, but decision theory
only consider them as set elements.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 13 / 135

decisions theory

The three fundamental concepts of decision theory are acts, states of
nature and outcomes.

Acts are under the control of the decision maker, who has to choose
one act from a given set of possible acts A = {a1, a2, ...aA}
States of nature are under the control of nature, and are
probabilistically selected by nature from a set S = {s1, s2, ...sS}. They
represent the circumstances about which there is uncertainty

When the act has been chosen and the state has been selected, the
outcome o = F (a, s) is determined, where F is the outcome mapping.
The set of possible outcomes is
O = F (A,S) = {F (a, s) | a ∈ A, s ∈ S}

Acts, states and outcomes can be complex objects, but decision theory
only consider them as set elements.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 13 / 135

decisions theory

The three fundamental concepts of decision theory are acts, states of
nature and outcomes.

Acts are under the control of the decision maker, who has to choose
one act from a given set of possible acts A = {a1, a2, ...aA}
States of nature are under the control of nature, and are
probabilistically selected by nature from a set S = {s1, s2, ...sS}. They
represent the circumstances about which there is uncertainty
When the act has been chosen and the state has been selected, the
outcome o = F (a, s) is determined, where F is the outcome mapping.
The set of possible outcomes is
O = F (A,S) = {F (a, s) | a ∈ A, s ∈ S}

Acts, states and outcomes can be complex objects, but decision theory
only consider them as set elements.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 13 / 135

state and outcome probabilities

In decision making under risk, or decisions under uncertainty, we assume
that for each possible act a, the decision maker is able to define a
probability distribution Pa over the states of nature :

Pa = {p1, p2, ..., pS}, with pi = P(si | a) and p1 + p2 + ...+ pS = 1

This leads to probability distributions Qa over the the set of possible
outcomes :

Qa = {q1, q2, ..., qO}, with qj = P(oj | a) =
∑

i
pi | oj = F (a, si)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 14 / 135

Outcomes, and Lotteries

Decision theory assumes that outcomes are the only thing decision maker
cares about when taking its decision. So it is assumed that the decision
maker has preferences over outcomes and only over outcomes.

In decision theory, an action is thus represented by a lottery :

L = {O,Q},

with O = {o1, o2, ..., oO}, Q = {q1, q2, ..., qO} and
∑

j qj = 1

Axioms of utilty theory constrain the possible patterns of preference
between lotteries a decision maker can exhibit.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 15 / 135

The expected utility theorem

Any preference pattern following these axioms can be represented by a
real-valued function U on the set of outcomes O, such that

L1 � L2 iff U(L1) ≥ U(L2)

with
U({{o1, o2, ..., oO}, {p1, p2, ..., pO}}) =

∑
i
piU(oi)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 16 / 135

The utility value function and attitudes toward risk

The utility function U is unique up to a positive linear transformation
U ′ = aU + b
For instance, U(ob) = 1 and U(ow) = 0

For continuous outcomes (money, time, etc.) U can be normally described
by a continuous function u(x)

U concave : risk averse
u(
∑

i pioi) ≥
∑

i piu(oi)
U convex : risk seeking

u(
∑

i pioi) ≤
∑

i piu(oi)
U linear : risk neutral

u(
∑

i pioi) =
∑

i piu(oi)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 17 / 135

Maximising expected utility

With the EU theory, the best action is the one that maximizes the utility
of its corresponding lottery

Ua∗ = max
a∈A

U(La)

= max
a∈A

U({O,Qa})

= max
a∈A

∑
j
P(oj | a)U(oi)

= max
a∈A

∑
i
P(si | a)U(F (a, si))

= max
a∈A

E [U(F (a, s) | a)]

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 18 / 135

One-step decision making

Decision theory is about one-step decision making

Ua∗ = max
a∈A

E [U(F (a, s) | a)]

a

s

U

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 19 / 135

Multi-step decision making

The theory of sequential decision making under uncertainty is about
multi-step decision making

a1

s

U

a2

s

U

a3

s

U

aT

s

U

t=1 t=2 t=3 t=T

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 20 / 135

Some new problems to consider

A sequential decision making problem is not just a set of independent
one-step decision making problems. How to formalize the relations
between these individual problems ?
How to aggregate the utilities of successive outcomes ? What new
choice criteria can we consider ?
How to represent decisions in sequential setting, what kind of optimal
solutions can we expect : sets of acts, plans, decision rules, policies,
behaviors... ?

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 21 / 135

Planning with decision trees
An explicit tree-based representation of all possible scenarios (tree paths)
from the initial situation (root) to final outcomes (leaves), through
decision nodes and chances nodes

0.8

0.2

0.5
0.5
0.9

0.1

1.0

0.5

0.1

1.0

1.0

0.65

0.35
0.5

0.5

a11

a12

a13

a14a1

a2

a3

a21

a22

a31

a32

0.5

0.5

0.4

1.0

8

-2

-5

10
5

20

5
-5

10

10

1

6

-2

10

5

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 22 / 135

Solving decision trees

A foldback analysis, from the leaves to the root

the utility value of a leaf is its outcome’s value U(l)
the utility value of a chance node is the expected utility of its
successors

U(c) =
∑

n∈succ(c)
p(c → n)U(n)

the utility value of a decision node is the maximum utility of its
successors

U(d) = max
n∈succ(d)

U(n)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 23 / 135

Solving decision trees

0.8

0.2

0.5
0.5
0.9

0.1

1.0

0.5

0.1

1.0

1.0

0.65

0.35
0.5

0.5

a11

a12

a13

a14a1

a2

a3

a21

a22

a31

a32

0.5

0.5

0.4

1.0

8

-2

-5

10
5

20

5
-5

10

10

1

6

-2

10

5

6.25

2.5

7.5

7.5

6

6.5

10

7.5

7.5

3.2

1

10

5

6.5

2.5

6

Here the optimal solution is the sequence < a3, a32 >, with U∗ = 7.5

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 24 / 135

Solving decision trees

Changing some probabilities or out-
come values can lead to different
optimal solution structures...

0.8

0.2

0.5
0.5
0.7

0.3

1.0

0.5

0.1

1.0

1.0

0.65

0.35
0.5

0.5

a11

a12

a13

a14a1

a2

a3

a21

a22

a31

a32

0.5

0.5

0.4

1.0

8

-2

-5

10
5

20

5
-5

10

10

1

6

-2

10

5

7.75

2.5

7.5

7.75

6

9.5

10

7.5

7.5

3.2

1

10

5

9.5

2.5

6

The new optimal solution is a conditional plan : < a1,
node11 → a11
node12 → a13

>

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 25 / 135

Limits of decision trees

do not allow independence or correlation relations to be exploited
grow exponentially with problem size, complexity in O((AO)T)
unnatural representation of conditional probabilities

Markov Decision Processes are a better framework !

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 26 / 135

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 27 / 135

What are MDPs ?

MDP = Markov Decision Processes, or also Markov Decision Problems
(Putterman 1994)

1 A mathematical framework for modeling optimal decision problems
2 A family of algorithmic methods for solving these optimization

problems

A simple and efficient modelling and optimisation framework, a
theoretically grounded decision approach, an extendable formalism that
can be modified and adapted.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 28 / 135

From decision trees to MDP

With finite-horizon MDP, decision trees are transformed so that

to each decision node is associated a state, the state of the system
just before taking the decision
chance nodes and random events ω are represented by transitions
between states
state transition probabilites are assumed to be Markovian
rewards are associated to state transitions, not only to final states
(leaves), and rewards are additive
optimal solutions are decision rules statei → actionj at each decision
stage t = 1, ...,T

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 29 / 135

Coupling one-step decision making problems

a1

s2

r1

a2

s3

r2

a3

s4

r3

aT

sT+1

rT

t=1 t=2 t=3 t=T

U

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 30 / 135

finite-horizon MDP definition

We define a finite-horizon MDP as < S,A,P,R, h,T > :

a set of states S
a set of actions A
transition probabilities P = {Pa, a ∈ A}
transition rewards R = {Ra, a ∈ A}
a terminal reward function h
a problem horizon T

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 31 / 135

Markov decision processes

A

1 2 3 4

T

S
s s

a2

a1

a

s’

p (s’ | s, a)
t

t

t t+1

r (s, a)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 32 / 135

Backward value iteration

Markov property and reward additivity make possible calculus
decomposition with a dynamic programming approach
For a general < S,A,P,R, h,T > MDP

∀s ∈ S V ∗0 (s) = hs

∀s ∈ S V ∗t (s) = max
a∈A

∑
s′∈S

P(s ′ | s, a)(r(s, a, s ′) + V ∗t−1(s ′))


for t = 1, ...,T .

Computational complexity in O(TAS2)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 33 / 135

Backward value iteration with average rewards

Defining
r(s, a) =

∑
s′∈S

P(s ′ | s, a)r(s, a, s ′),

we’ve got :

∀s ∈ S V ∗0 (s) = hs

∀s ∈ S V ∗t (s) = max
a∈A

r(s, a) +
∑
s′∈S

P(s ′ | s, a)V ∗t−1(s ′)


for t = 1, ...,T .

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 34 / 135

Finite-horizon optimal policies

The optimal solution is a sequence of policies π∗t , t = 1, ...,T , which are
decision rules from S to A :

∀s ∈ S π∗t (s) ∈ argmax
a∈A

∑
s′∈S

r(s, a) + P(s ′ | s, a)V ∗T−t(s ′)


The optimal policy is

Markov (only depends on the current state)
deterministic (always the same action in the same state)
non-stationay (the best action depends on the decision stage t)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 35 / 135

Policy families

policy πt deterministic stochastic
Markov st −→ at at , st −→ [0, 1]

History-dependent ht −→ at ht , st −→ [0, 1]

where ht = (s1, a1, s2, . . . , st−1, at−1, st)
Stationary policies are such that ∀t πt = π

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 36 / 135

Value functions and finite-horizon criterion

The optimal policy π∗ calculated with backward value iteration maximizes
the T−step value function V π

T , from S to R :

V π
T (s) = E

[t=T∑
t=1

r(st , at , st+1) | s1 = s, πt

]

V π
T (s) is the expected value of the the sum of rewards when starting in s

and following the policy π during T steps

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 37 / 135

Maximizing value functions

Natural partial order on value functions V π
T ∈ RS :

∀U,V ∈ RS U � V ⇔ ∀s ∈ S U(s) ≤ V (s).

But the optimal solution π∗ is the same for any initial state s at time
t = 1 :

∀π ∈ Π ∀s ∈ S V π
T (s) ≤ V π∗

T (s)

One can write V ∗T = maxπ∈Π V π
T = V π∗

T

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 38 / 135

Computing value functions with backward iteration

For a given policy π = (π1, . . . , πT), its value function V π
T can be

calculated by :

∀s ∈ S V π
0 (s) = hs

∀s ∈ S V π
t (s) =

∑
s′∈S

r(s, πT−t+1(s)) + P(s ′ | s, πT−t+1(s))V π
t−1(s ′)

for t = 1, ...,T .

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 39 / 135

Turnpike planning horizon theorem

Optimal policy π∗ and optimal value function V ∗T are non-stationary.

However, there exists some H such that ∀T > H, π∗1/T = π∗1/H

For a given MDP problem, the optimal decision at the first stage will be
same for any longer planning horizon than the Turnpike planning horizon.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 40 / 135

MDP with infinite horizon

Why infinite horizon ?

a good approximation for large planning horizon
leads to stationary optimal solutions (cf. turnpike theorem)
efficient algorithms

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 41 / 135

Optimality criteria with infinite horizon

For a given policy π one can consider :
The total reward criterion

V π(s) = E
[∞∑

t=1
r(st , at , st+1) | s1 = s, π

]

The average reward criterion

ρπ(s) = lim
n→∞

E
[
1
n

n∑
t=1

r(st , at , st+1) | s1 = s, π
]

The γ-discounted criterion

V π
γ (s) = E

[∞∑
t=1

γt−1r(st , at , st+1) | s1 = s, πt

]

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 42 / 135

Optimality criteria with infinite horizon

Total reward criterion can be used with finite unbounded horizon, like
optimal stopping problems. Otherwise the existence of V π(s) is not always
guaranteed

Average reward criterion reflects the average value of the rewards per step
along the trajectory, and is used in many cyclical tasks like queueing
control or communication network problems.

The theoretical analysis of these two criteria is more complex than for the
discounted criterion, although there exist some efficient corresponding
optimization algorithms

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 43 / 135

The γ-discounted criterion

The most commonly used criterion in infinite horizon

For an MDP < S,A,P,R, γ > we look for π∗ such that :

∀π ∀s ∈ S V π
γ (s) ≤ V π∗

γ (s)

with
V π
γ (s) = E

[∞∑
t=1

γt−1r(st , at , st+1) | s1 = s, πt

]
This value function always exists for 0 ≤ γ < 1

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 44 / 135

The discount factor γ

The factor γ can be interpreted as

the value at time t of a unit reward perceived at time t + 1. In
economy, γ = 1

1+r , where r is the discount rate, or interest rate ;
the subjective probability that the decision problem will end before
the next period

One assumes that decision stages are regularly dispatched on the temporal
axis

The discount factor is part of the decision model

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 45 / 135

Computing the value function V π
γ

For a given stationary Markov policy π, the discounted value function V π
γ

is unique solution of the following fixed-point equation :

∀s ∈ S V π
γ (s) =

∑
s′∈S

P(s ′ | s, π(s))(r(s, π(s), s ′) + γV π
γ (s ′))

or, with r(s, a) rewards :

∀s ∈ S V π
γ (s) = r(s, π(s)) + γ

∑
s′∈S

P(s ′ | s, π(s))V π
γ (s ′)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 46 / 135

With vector and matrix notations

We denote by Pπ the matrix of the P(s ′ | s, π(s)) probabilities, and by Rπ
the vector of the r(s, π(s)) rewards. Pπ and Rπ can be built line after line
from π and the matrices Pa and Ra
The fixed-point equation becomes :

V π
γ = Rπ + γPπV π

γ

Its solution is given by

V π
γ = (I − γPπ)−1Rπ

(I − γPπ)−1 exists for γ < 1 because Pπ is a probability matrix.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 47 / 135

A fixed-point iterative approach

An Iterative approach :

Vn+1 = Rπ + γPπVn,

or equivalently

∀s ∈ S Vn+1(s) = r(s, π(s)) + γ
∑
s′∈S

P(s ′ | s, π(s))Vn(s ′)

until ‖Vn+1 − Vn‖ < ε

Vn converges toward V π
γ , ∀V0 ∈ R

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 48 / 135

Bellman’s optimality equation

Recall the backward iteration algorithm in finite horizon :

∀s ∈ S V ∗0 (s) = hs

∀s ∈ S V ∗t (s) = max
a∈A

∑
s′∈S

P(s ′ | s, a)(r(s, a, s ′) + V ∗t−1(s ′))


In infinite horizon, we’ve got at the limit :

∀s ∈ S V ∗∞(s) = max
a∈A

∑
s′∈S

P(s ′ | s, a)(r(s, a, s ′) + γV ∗∞(s ′))


This is the Bellman’s equation, with its unique solution V ∗γ = V ∗∞

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 49 / 135

Solving the Bellman’s optimality equation

3 main approaches :

value iteration
policy iteration
linear programming

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 50 / 135

value iteration

An Iterative approach on value function

Vn+1 = max
a
{Ra + γPaVn},

or equivalently

∀s ∈ S Vn+1(s) = max
a
{r(s, a) + γ

∑
s′∈S

P(s ′ | s, a)Vn(s ′)}

until ‖Vn+1 − Vn‖ < ε

Vn converges toward V ∗γ , ∀V0 ∈ R
πn converges toward π∗, ∀V0 ∈ R

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 51 / 135

policy iteration

An iterative approach on policies

πn+1 = argmax
a
{Ra + γPaV πn},

until πn+1 = πn

fast convergence toward π∗, ∀pi0

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 52 / 135

linear programming

Solve :
min

V

∑
s∈S

V (s)

with :

V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s ′ | s, a)V (s ′), ∀s ∈ S, a ∈ A

Polynomial in S, A

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 53 / 135

Value function approximation

We have seen exact methods where optimal value functions are exactly
computed.
In practice, for large-size problems, the perfect representation of these
functions is impossible.

We need to approximate these functions (Bertsekas and Tsitsiklis 1996)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 54 / 135

Value function approximation

Important result :
V from S to IR, and π a policy "greedy" w.r.t. V :

∀s ∈ S π(s) = argmax
a
{r(s, a) + γ

∑
s′∈S

P(s ′ | s, a)V (s ′)}

Then
‖V ∗γ − V π

γ ‖ ≤
2γ

1− γ ‖V − V ∗γ ‖

This justifies the search for a good approximation of the optimal value
function

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 55 / 135

Value function approximation

linear approximation with features

Vξ(s) = ξ(1)ψ1(s) + · · · ξ(K)ψK (s)

where ψi () are K features from S to R
non linear approximation, neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 56 / 135

Value function approximation

Approximate value iteration algorithm :

Vn+1 = A
(

max
a
{Ra + γPaVn}

)
,

until ‖Vn+1 − Vn‖ < ε,
where A is a projection operator on the set of approximate value functions

Approximate policy iteration algorithm :
- Approximation : compute Vn an approximation of V πn

γ

- Improvement :
πn+1 = argmax

a
{Ra + γPaVn},

One can show that

lim
n→∞

‖V ∗γ − V πn
γ ‖ ≤

2γ
(1− γ)2 lim

n→∞
‖Vn − V πn

γ ‖

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 57 / 135

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 58 / 135

Reinforcement Learning ...
An autonomous agent exploring his environment, in order to learn a
behavior that maximizes the rewards he receives.

ENVIRONNEMENT

STRATEGIE

ACTIONS

OBSERVATIONS
+

RECOMPENSES

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 59 / 135

What’s new ?

Reinforcement Learning goes beyond dynamic programming in two ways :

learning an optimal policy from experience
(staten, actionn, staten+1, rewardn)

solving decision problems with large dimensions by parameterizing
value functions or policies.

(Sutton and Barto 1998)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 60 / 135

3 types of machine learning

Supervised learning
learning from a teacher
with labelled exemples
generalizing

Unsupervised learning
learning from similarities
with unlabelled exemples
finding structure

Reinforcement learning
learning by interaction
with trial and error
optimizing behavior

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 61 / 135

Real-Time Dynamic Programming

RTDP algorithm : learning the optimal value function with value iteration,
with update in the current state :
After each transition,

(sn, an, sn+1, rn)

Vn+1 ← Vn

Vn+1(sn) ← max
a
{r(sn, a) + γ

∑
s′

p(s ′ | sn, a)Vn(s ′)}

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 62 / 135

Choice of transitions

Current state sn is the resulting state of the last transition (real-time
constraint)
The choice of an is directed by the current value function Vn :

an = argmax
a
{r(sn, a) + γ

∑
s′

p(s ′ | sn, a)Vn(s ′)}

Optimistic algorithm

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 63 / 135

Adaptive RTDP

The MDP model is estimated on-line

p(s ′|s, a) ←
ns′

s,a
ns,a

r(s, a) ← rn

and an visits A (exploration)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 64 / 135

Q-learning

(Watkins 1999)

No use of the MDP model
Learning of the optimal value function following value iteration principle

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 65 / 135

The Q-value function

Without model, V ∗ is not sufficient to define the corresponding optimal
policy

π∗(s) = argmax
a
{r(s, a) + γ

∑
s′

p(s ′ | s, a)V ∗(s ′)}

We thus try to learn the Q-value function :

Q∗(s, a) = r(s, a) + γ
∑
s′

p(s ′ | s, a)V ∗(s ′)

We have

π∗(s) = argmax
a

Q∗(s, a) et V ∗(s) = max
a

Q∗(s, a)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 66 / 135

The Q-value function

s, a

V ∗(s ′′)

V ∗(s ′)

��
�
�*

HHH
Hj

p

1− p
s, a′

V ∗(s ′′)

V ∗(s ′)

��
�
�*

HHH
Hj

q

1− q

Q∗(s, a) = r(s, a) + γ{pV ∗(s ′) + (1− p)V ∗(s ′′)}
Q∗(s, a′) = r(s, a′) + γ{qV ∗(s ′) + (1− q)V ∗(s ′′)}

π∗(s) = argmax
a,a′

{Q∗(s, a), Q∗(s, a′)}

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 67 / 135

Q-Learning principle

Value iteration

Vn+1(s) ← max
a

Qn(s,a)︷ ︸︸ ︷
{r(s, a) + γ

∑
s′

p(s ′ | s, a)Vn(s ′)}

⇒ Qn+1(s, a) = r(s, a) + γ
∑
s′

p(s ′ | s, a)Vn+1(s ′)}

Qn+1(s, a) ← r(s, a) + γ
∑
s′

p(s ′ | s, a) max
a′

Qn(s ′, a′)

For the pair (sn, an), we estimate the sum by

rn + γmax
a′

Qn(sn+1, a′)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 68 / 135

Q-learning algorithm

After each transition,
(sn, an, sn+1, rn)

Qn+1 ← Qn

δn ← rn + γmax
a′

Qn(sn+1, a′)− Qn(sn, an)

Qn+1(sn, an) ← Qn(sn, an) + αnδn

with limn→∞ αn = 0 (e.g. 1
n ou 1

ns,a
)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 69 / 135

Stochastic approximation and Q-learning

Bellman equation :

V ∗(s) = max
a

∑
s′

p(s ′ | s, a){r(s, a, s ′) + γV ∗(s ′)}, ∀s

Equivalently,

V ∗(s) = max
a

Q∗(s, a), ∀s

Q∗(s, a) =
∑
s′

p(s ′ | s, a){r(s, a, s ′) + γmax
a′

Q∗(s ′, a′)}, ∀s, a

Q∗(s, a) = E [r(s, a, s ′) + γmax
a′

Q∗(s ′, a′)], ∀s, a

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 70 / 135

Stochastic approximation and Q-learning

Let ξ = (s, a, r , s ′), and H(Q, ξ)s,a = (r + γmaxa′ Q(s ′, a′)− Q(s, a))
Then

E [H(Q∗, ξ)] = 0

The Robbins-Monro algorithm gives directly

Qn+1 = Qn + αnH(Qn, ξn)

that is

Qn+1(sn, an) = Qn(sn, an) + αn(rn + γmax
a′

Qn(sn+1, a′)− Qn(sn, an))

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 71 / 135

Q-learning convergence

For a good decrease rate of αn to 0 (e.g. 1
n ou 1

ns,a
), and if all state-action

pairs of S × A are infinitely visited, then Q-learning converges to Q∗ with
probability = 1.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 72 / 135

The Exploration / Exploitation dilemna

Le choix de l’état est souvent lié à la dynamique.
Pour l’action, une démarche optimiste consiste à choisir à chaque itération
la meilleure action courante

an = argmax
a

Qn(sn, a)

Plus raisonnablement, il convient de régulièrement choisir une action
aléatoire dans A.
On utilise ainsi des fonctions d’exploration dirigées ou non-dirigées

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 73 / 135

Fonctions d’exploration non-dirigées

suivre Qn pendant N1 transitions, puis tirer uniformément dans A
pendant N2 transitions
à chaque itération suivre Qn avec une probabilité τ , ou tirer
uniformément dans A avec une probabilité 1− τ
tirer an dans A selon

pT (a) = e−
Qn(sn,a)

T∑
a′ e−

Qn(sn,a′)
T

avecT →
∞

0

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 74 / 135

Guided exploration policies

On utilise l’information accumulée au cours de la recherche, autre que Qn.
En pratique, on ajoute à Qn un bonus d’exploration et on choisit la
fonction qui maximise cette somme.
Exemple de bonus

la recency based method : Qn(s, a) + ε
√

(Ts,a)
Ts,a est le nombre d’itérations depuis le dernier choix de a dans s
la uncertainty estimation method : Qn(s, a) + ε/ns,a

UCB1 (regret minimization) : Qn(s, a) +
√
2log(n)/(ns,a

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 75 / 135

On-Policy and Off-Policy learning rules

Dans le Q-learning, la politique d’exploration intervient juste pour générer
les expériences ξ = (sn, an, rn, sn+1) (Off-policy)

Qn+1(sn, an) = Qn(sn, an) + αn(rn + γmax
a′

Qn(sn+1, a′)− Qn(sn, an))

L’algorithme SARSA adapte la règle d’apprentissage en prenant en compte
explicitement la politique d’exploration et l’action an+1 (On-policy) :

Qn+1(sn, an) = Qn(sn, an) + αn(rn + γQn(sn+1, an+1)− Qn(sn, an))

Sarsa converge également vers Q∗

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 76 / 135

Joint learning of a value fuction and a policy

Dans le Q-learning, la politique apprise est directement liée à la fonction Q
apprise.
Il est aussi possible de gérer explicitement une suite de politiques πn et une
suite de fonctions de valeur Vn. On suit alors le même principe que dans
l’algorithme de policy iteration

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 77 / 135

Principe des actor-critic methods

On maintient πn (action network) et Vn (critic network)
Après chaque transition (sn, an, sn+1, rn)

(p(s ′ | s, a) et r(s, a) sont mis à jour)
Vn est mise à jour
πn est améliorée

Est souvent associé à une représentation paramétrée de Vn et πn (voir plus
loin).

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 78 / 135

Apprentissage de la
fonction de valeur d’une politique

La valeur normale de Vn devrait être Vπn . Différentes méthodes
permettent de l’approcher

maximum de vraisemblance : calcul de Vπn sur la base des estimées
p() et r() ; peu efficace
Monte Carlo
Programmation Dynamique
TD(λ)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 79 / 135

Méthode de Monte Carlo
Dans le cadre γ = 1 avec état absorbant
Pour une politique π fixée
On observe (s0, . . . , sN) et (r0, . . . , rN−1)

s_k

s_k+1

s_N

s_1

s_2

s_N-1

s_0

r_0

r_1

r_2

r_k-1

r_N-1

r_k+2

r_k

r_N-2

0

s_k+2

r_k+1

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 80 / 135

Algorithmes off-line / on-line

A la fin de chaque trajectoire, on met à jour les N valeurs V (sk) par

V (sk)← V (sk) + α(rk + rk+1 + · · ·+ rN−1 − V (sk))

On peut aussi modifier V après chaque transition (sk , sk+1, rk), en
utilisant les différences temporelles :

rk + rk+1 + · · ·+ rN−1 − V (sk) = dk + dk+1 + · · ·+ dN−1

avec dk = rk + V (sk+1)− V (sk)

V (sl)← V (sl) + αdk , l = 0, . . . , k

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 81 / 135

La méthode de la programmation dynamique

On peut aussi chercher à résoudre stochastiquement le système
d’équations linéaires définissant V :

V (s) = r(s, π(s)) +
∑
s′

p(s ′ | s, π(s))V (s ′)}

Après chaque transition (sk , sk+1, rk)

V (sk) ← V (sk) + α(rk + V (sk+1)− V (sk))
← V (sk) + αdk

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 82 / 135

La méthode des différences temporelles (TD(λ))

TD(λ) est un compromis entre les deux précédentes méthodes
Pour une trajectoire observée (s0, . . . , sN) et (r0, . . . , rN−1) la fonction de
valeur courante V est mise à jour selon

V (sk)← V (sk) + α
m=N−1∑

m=k
λm−kdm, k = 0, . . . ,N − 1

λ = 0 : méthode de la programmation dynamique
λ = 1 : méthode de Monte Carlo

La convergence presque sûre est assurée.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 83 / 135

Comparaison entre Monte Carlo
et Programmation Dynamique (TD(0))

A B

r=1

r=0

(A, 0, B, 0)
(B,1)
(B,1)
(B,1)

(B,1)
(B,1)
(B,1)
(B,0)

75%

25%100%

Que vaut V (B) ? et V (A) ?
F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 84 / 135

Comparaison entre Monte Carlo
et Programmation Dynamique (TD(0))

V (B) ≈ 3
4

V (A) ≈ 0 pour Monte Carlo
V (A) ≈ 3

4 pour TD(0)

Monte Carlo minimise l’erreur quadratique sur les observations.
TD(0) maximise la vraisemblance de l’estimation.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 85 / 135

TD(λ) on-line

Après chaque transition (sk , sk+1, rk),

V (sl)← V (sl) + αλk−ldk , l = 0, . . . , k

On utilise surtout une forme similaire de cet algorithme utilisant la notion
de trace d’éligibilité.

V (s)← V (s) + αzk(s)dk ∀s ∈ S

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 86 / 135

Trace d’éligibilité accumulative

z0(s) = 0, ∀s ∈ S

zn(s) =
{
γλzn−1(s) si s 6= sn
γλzn−1(s) + 1 si s = sn

n

z(s)

1

dates des visites de l’état s

n

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 87 / 135

Trace d’éligibilité avec réinitialisation

z0(s) = 0, ∀s ∈ S

zn(s) =
{
γλzn−1(s) si s 6= sn
1 si s = sn

1

dates des visites de l’état s

n

n

z(s)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 88 / 135

TD(λ) et Q-learning

Si TD(λ) est utilisé dans les méthodes de type policy iteration pour
évaluer une politique, il peut aussi être utilisé pour améliorer le Q-learning
Après chaque expérience, ou transition (sn, an, sn+1, rn)

zn ← 0 si an 6= argmax
a

Qn(sn, a)

zn(sn, an) ← zn(sn, an) + 1
δn ← rn + γmax

a′
Qn(sn+1, a′)− Qn(sn, an)

Qn+1(s, a) ← Qn(s, a) + αnzn(s, a)δn

zn+1(s, a) ← γλzn(s, a)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 89 / 135

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 90 / 135

Représentation de la fonction de valeur

Pour des problèmes discrets de faibles tailles, il est possible de représenter
V = V π ou V = V ∗ (ou Q) par un tableau état :valeur (look-up table).
L’apprentissage de V porte alors directement sur ses composantes.
Pour des problèmes de grande dimension ou à domaines continus, il est
nécessaire de passer par une représentation paramètrée

V = Vξ ou Q = Qξ

où ξ est un vecteur de paramètres de plus faible taille.
L’apprentissage porte alors sur ξ

ξn+1 = ξn + α∆(sn, an, sn+1, rn)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 91 / 135

Caractéristiques d’une architecture

la capacité d’approximation : on cherche à minimiser l’erreur intrinsèque
ε = minξ ‖V − Vξ‖ ;

la capacité de généralisation : on recherche des ξ de faible dimension
minimisant ε ⇒ les valeurs de plusieurs états seront
simultanément modifiées avec la présentation d’un seul
exemple ;

la simplicité de l’évaluation : selon la paramétrisation retenue, le calcul
pour un état s ∈ S de Vξ(s) peut être plus ou moins
coûteux ;

l’efficacité de l’apprentissage : selon ξ, la convergence n’est plus toujours
assurée, et les algorithmes peuvent devenir très complexes.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 92 / 135

Différentes architectures d’approximation

représentations différentiables
I linéaires
I réseaux neuronaux
I . . .

représentations non différentiables
I arbres de régression,
I règles de décision
I . . .

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 93 / 135

Représentations différentiables

Il est naturel ici d’utiliser des méthodes de type descente de gradient
stochastique pour apprendre le vecteur de paramètres ξ

ξn+1 = ξn + αn(Rn − Vξn (sn))∇ξnVξn (sn)

où Rn est l’estimation directe tirée de l’expérience de la valeur de V en sn
(cf. Monte Carlo, TD(0) et TD(λ)).
Dans le cas général, seul Monte Carlo assure que cette règle de mise à jour
converge vers un optimum local pour

ε(ξ) =
∑
s∈S

(V (s)− Vξ(s))2

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 94 / 135

Les représentations linéaires

Vξ(s) = ξ(1)ψ1(s) + · · · ξ(K)ψK (s)

où les ψi () sont K fonctions de S dans R

∇ξnVξn (sn) = (ψ1(sn), . . . , ψK (sn))T

entraine

ξn+1(i) = ξn(i) + αn(Rn − Vξn (sn))ψi (sn), ∀i = 1, . . . ,K

Il existe un optimum unique ξ∗ pour l’erreur quadratique, et TD(λ)
converge nécessairement (mais non forcément vers ξ∗)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 95 / 135

Les fonctions de voisinage

On définit K régions Ri qui forment ensemble une couverture de S, et on
pose pour i = 1, . . . ,K ψi () = 11Ri () la fonction indicatrice de Ri

∀s ∈ S ψi (s) =
{

1 si s ∈ Ri
0 sinon

Exemple : state aggregation, où les Ri forment une partition de S.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 96 / 135

La méthode des CMAC
(cerebellar model articulator controller)

Méthode simple utilisée pour des espaces
continus de faible dimension
Principe : définir C partitions (ou grilles) de
S, décalées géométriquement les unes par
rapport aux autres
À chaque région de chaque grille, on associe
un poids ξ(i). La valeur d’un état s de S est
la somme des C poids des régions de chaque
grille qui le contiennent. Quadrillage #1

Quadrillage #2

d’états
espace
limite

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 97 / 135

Les méthodes à base d’états représentatifs

On place K points si dans S, centres d’une région

s2

s1
s4

s3

La forme de la région est fixe, les recouvrements sont possibles

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 98 / 135

Les méthodes à base d’états représentatifs

On peut aussi associer une valeur réelle dans l’intervalle [0, 1] fonction de
la distance au centre.
Exemple : les radial basis functions

∀s ∈ S ψi (s) = exp(−‖s − si‖
2σi 2

)

On peut alors apprendre aussi les meilleurs paramètres si et σi
(architecture non-linéaire)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 99 / 135

triangularisation de l’espace d’états
On triangularise S ⊂ Rn par les points si

s

On définit la fonction de valeur Vξ(s) en tout point s comme la
combinaison linéaire

Vξ(s) = λsi0
(s)Vξ(si0) + · · ·λsin (s)Vξ(sin)

où les λsij
(s) sont les coordonnées barycentriques du point s par rapport

aux n + 1 points si0 , ..., sin du simplexe qui le contient.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 100 / 135

Les fonctions coordonnées

On projette S dans un sous-espace RK , en définissant K nouvelles
coordonnées fonctions des anciennes.
Les nouvelles coordonnées résument le mieux possible les propriétés d’un
état vis-à-vis de la tâche à apprendre.
Exemple : Tétris. h × l variables d’états binaires ⇒ 2l + 1 coordonnées

les hauteurs hk des l colonnes

les différences | hk − hk+1 |

la hauteur maximale du mur maxk hk

le nombre de trous dans le mur

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 101 / 135

Les fonctions heuristiques

Permet d’exploiter la connaissance de stratégies répondant partiellement
au problème
Les ψi () sont les fonctions de valeur associées à des politiques obtenues
par expertise ou par une première résolution approchée.

Vξ(s) = ξ(1)Vπ1(s) + · · · ξ(K)VπK (s)

Les Vπi est estimées par simulation, et elles-même paramétrées

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 102 / 135

Approximations non-linéaires :
le perceptron multi-couches
L’architecture non-linéaire aujourd’hui la plus employée en apprentissage
par renforcement.

poids ω poids ωij k

entrées sortie

Pour un état s = (s(1), . . . , s(i), . . .), V (s) est approchée par
Vξ(s) =

∑
k
ωkσ (

∑
i
ωk,is(i))

avec (par exemple)
σ (x) = 1

1 + exp(−x)
Les perceptrons multi-couches sont une généralisation de ce principe avec
des réseaux où s’enchaînent couches linéaires et couches sigmoïdales.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 103 / 135

Apprentissage du perceptron multi-couches

poids ω poids ωij k

entrées sortie

Le vecteur ξ est constitué des poids ωi , ωjk , . . . du réseau.
L’apprentissage de ces poids est réalisé à partir de la règle de gradient.
Le calcul du terme de gradient ∇ξnVξn est effectué par des techniques de
rétro-propagation au sein du réseau.
Il existe de nombreux algorithmes d’apprentissage par renforcement
couplant Q-learning et/ou TD(λ) avec un perceptron (cf. deep RL).

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 104 / 135

Apprentissage de structures non-différentiables

Toutes les structures des représentations précédentes doivent être adaptées
à la tâche à apprendre.
Il existe quelques algorithmes d’apprentissage par renforcement cherchant
à apprendre une telle résolution spatiale optimale.
Les méthodes de gradient ne sont plus adaptées : gradient tree boosting,
algorithmes évolutionnaires, etc.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 105 / 135

Calcul en ligne des politiques

Pour des problèmes de grandes dimension, le passage exacte en fin ou en
cours d’apprentissage de V ou Q vers a ou π peut être très coûteux et
doit être approché :

π̂(s) = argmin
a

Qω(s, a)

= argmin
a

∑
s′

p̂(s ′ | s, a){r(s, a, s ′) + γVω(s ′)}

= argmin
a

1
N

N∑
i=1
{r(s, a, s ′i) + γVω(s ′i)}

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 106 / 135

Online search by simulation

On peut également approcher π uniquement pour l’état courant, sur un
horizon H > 1 (Roll-out)

s
t

s
t−1

s
t−2

st−3

t−2 t−1 tt−3

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 107 / 135

On-line resolution techniques

Iterative allocation of simulations

Possible pathology of the simulation-based forward search

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 108 / 135

Policy approximation

Il est toutefois souvent intéressant d’approximer

πn(s) = argmax
a

Qn(s, a)

par une fonction paramètrée (action network)

πn = πθn

La dynamique de θn peut être alors être plus ou moins entrelacée à celle
de Vn ou Qn (actor-critic architecture).

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 109 / 135

Direct policy search

Policy parameterization πθ(s), with θ ∈ Θ ⊆ Rp

we look for optimal parameters θ∗ that optimize the expected
performance

J(θ∗) = max
θ∈Θ

V πθ
γ ,

based on observed trajectories following πθ obtained by simulation

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 110 / 135

Policy approximation

We typically consider stochastic policies, like :

πθ(s) = a with probability q(a | s; θ) ∀s

For instance :
q(a | s; θ) = θs,a∑

b θs,b
, , θs,a ≥ 0

q(a | s; θ) = exp θ.φ(s, a)∑
b exp θ.φ(s, b)

with
φ(s, a) = (φ1(s, a), . . . , φp(s, a))

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 111 / 135

Policy gradient and one-step MDP

One step MDP (T = 1), random initial state following µ(s)

J(θ∗) = max
θ

E [r(s, a, s ′)]

Score function method

∇E [r(s, a, s ′)] = ∇

∑
s,a,s′

µ(s)q(a|s; θ)p(s ′|s, a)r(s, a, s ′)


=

∑
s,a,s′

[∇q(a|s; θ)
q(a|s; θ) r(s, a, s ′)

]
µ(s)q(a|s; ~θ)p(s ′|s, a)

= E
[∇q(a|s; θ)

q(a|s; θ) r(s, a, s ′)
]
.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 112 / 135

Policy gradient and one-step MDP

With q(a | s; θ) = exp θ.φ(s,a)∑
b exp θ.φ(s,b) :

1
q(a|s; θ)

∂q(a|s; θ)
∂θi

= φi (s, a)−
∑

b
φi (s, b)q(b|s; θ),

thus

∇q(a|s; θ)
q(a|s; θ) = φ(s, a)−

∑
b

q(b|s; θ)φ(s, b)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 113 / 135

Policy gradient and MDP

Horizon T ≥ 1

J(θ∗) = max
θ

E [r(s0, a0, s1) + γr(s1, a1, s2) + · · ·+ γT−1r(sT−1, aT−1, sT)]

A similar approach leads to

∇J(θ) = ∇E [
T−1∑
t=0

γtrt] = E
[T−1∑

t=0
γtrt

t−1∑
t′=0

∇q(at′ |st′ ; θ)
q(at′ |st′ ; θ)

]
Make possible sampling approaches and online methods with trace
eligibilities

zt =
t−1∑
t′=0

∇q(at′ |st′ ; θ)
q(at′ |st′ ; θ)

Many policy gradient algorithms !

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 114 / 135

Policy gradient and MDP

Infinite horizon, Bellman equation :

Vθ(s) =
∑

a
q(a|s; θ)

∑
s′

p(s ′|s, a)(r(s, a, s ′) + γVθ(s ′))

Then we have

∇Vθ(s) = E
[∞∑

t=0
γt∇q(at |st ; θ)

q(at |st ; θ) Qθ(s, a)|s0 = s
]

thus

∇J(θ) =
∑

s
µ(s)∇Vθ(s)

=
∑

s
µγθ (s)

∑
a
∇q(a|s; θ)Qθ(s, a)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 115 / 135

Actor-critic methods

Use of an approximate value function Qω(s, a), estimated during
simulation
Compatibilty criterion between parameters ω and θ

∇Qω(s, a) = ∇q(a|s; θ)
q(a|s; θ)

For instance with q(a | s; θ) = exp θ.φ(s,a)∑
b exp θ.φ(s,b) :

Qω(s, a) = ω.(φ(s, a)−
∑

b
q(b|s; θ)φ(s, b))

Qω linéaire en φi

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 116 / 135

Deep Reinforcement Learning

Outperforms all previous state-of-the-art methods
neural networks to estimate Qω or πθ
unstable : target network, experience replay,
asynchronous methods
deep Q-learning (DQN, ...)
deep policy gradient and actor-critic
methods (DDPG, A3C, ACER, ...)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 117 / 135

Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 118 / 135

Spiking neurons

next generation of neural networks
biologically realistic models of neurons
discrete events rather than continuous
values
many neuronal models :
Hodgkin-Huxley (micro), Leaky
Integrate-and-Fire, Spike Response
Model, Thorpe Model (macro), etc.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 119 / 135

Leaky integrate-and-fire neurons

Voltage membrane potential v , excitatory input current I

τm
dv(t)
dt = vrest − v(t) + R.I(t)

When v reaches a threshold vth, the neuron fires a spike and v is reset to
vrest .
A synaptic model of the excitatory input current I of a neuron :

I(t) =
∑

j
wj
∑

f
ε(t − t f

j)

where wj is the connection strength of the synapse from neuron j , t f
j the

firing times and ε() the time response of the spike.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 120 / 135

Learning in spiking neural networks

Like for traditional neural networks, and more generally for learning
systems, 3 different learning paradigms :

supervised learning
unsupervised learning
reinforcement learning

Explicit time dependence, asynchronous information processing, make
learning procedures more complex than for the classical perceptron
approach.
Promising results for unsupervised and supervised deep learning with
spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 121 / 135

Hebbian learning vs backpropagation

"Hebbian rule : when an axon of cell A persistently takes part
in firing cell B, some growth process or metabolic change takes
place to increase A’s efficacy as one of the cells firing B.” -
Donald Hebb, 1949

Hebbian learning corresponds to an unsupervised setting : no need of
external target
supervised learning relies typically of gradient based descent, to
modify synaptic weights with back propagation in order to minimize
the error between the network output and the desired target.

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 122 / 135

STDP- Spike-Timing Dependent Plasticity

directly inspired by Hebb’s law.
synaptic changes dependent on the
relative timing of pre and post
synaptic spikes
with a learning window

∆wj =
∑

f

∑
n

W (tn − t f
j)

online implementation with traces

τ+
dzj
dt = −zj + A+

∑
f
δ(t − t f

j) and τ−
dz
dt = −z + A−

∑
n
δ(t − tn)

many variants of STDP models

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 123 / 135

STDP and Reinforcement Learning

How to model synaptic changes considering a global reward signal ?
Few propositions in the litterature for RL and spiking neuron networks,
more or less related to STDP (Gerstner 2000, Seung 2003, Xi & Seung
2004, Florian 2007, Takita & Hagiwara 2005, El-Laithy & Bogdan 2011,
etc.)
The difficulties are :

how to take into account the credit assignment problem ?
how to obtain a local biological plausible learning rule ?

Modulated STDP, with eligibility traces for hebbian learning and additional
"gating signals" like rewards, leads to "neo-hebbian three-factor" learning
rules (Gerstner at al. 2018)

∆wij = αzij r

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 124 / 135

Back to MDP and RL frameworks

With STDP reinforcement learning, we want to learn the optimal synaptic
strengths wij when every neuron is an agent, and there is a global reward
rt for the whole network
The classical MDP and RL frameworks must be extended, e.g. :

TMDP, SMDP, GSMDP for time-dependence
DEC-MDP for decentralized decison-making
GMDP for graph-based representation
POMDP for partially observable states

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 125 / 135

POMDP framework

MDP for state (x) - action (u)
probabilistic dynamics
reward r(x)
observation distribution νy (x)
prob. of observing y in state x
stochastic policy µu(y) prob. of
choosing action u for
observation y

Parameterized policy µu(y) = µ(θ, . . .)
we want to maximize J(θ) = limn→∞ Eθ

[
1
n
∑n

t=1 r(st)
]

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 126 / 135

Direct RL approach (OLPOMDP, Baxter & Bartlett)

the trace
zt+1 = βzt + ∇µut (yt , θ)

µut (yt , θ) , with β ∈ (0, 1)

converges to a good estimate of ∇J(θ) when β close to 1
online approach :

θt+1 = θt + αrtzt+1, with α small learning rate

still valid in a multi-agent framework :

z i
t+1 = βz i

t +
∇µui

t
(y i

t , θ
i)

µui
t
(y i

t , θi)
θi

t+1 = θi
t + αrtz i

t+1

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 127 / 135

A very simple spiking neural model

Stochastic spiking neuron model :
Actions : ut = 1 fire at time t, otherwise ut = 0
Potential vt =

∑
j wjuj

t−1
– wj is the connection strength of jth synapse
– uj

t−1 is the activity of jth presynaptic neuron
Firing probability P(ut = 1) = σ(vt) = 1

1+exp(−vt)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 128 / 135

RL of optimal fires

local RL rule :

zj,t+1 = βzj,t + (ut − σ(vt))uj
t−1

wj,t+1 = wj,t + αrtzj,t+1

Very similar to reward modulated STDP (cf. works by Florian et al.).

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 129 / 135

With the Spike Response Model (SRM)

A more realistic neuron model with memory of past inputs

vi (t) = ηi (t − t̂i) +
∑

j
wij
∑

f
εij(t − t̂i , t − t f

j)

where t̂i is the last spike and ηi the refractory response.
The neuron fires stochastically with

P(ui (t) = 1) = ρi (vi (t)− θi)

(escape noise model), with ρi the firing intensity (probability density)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 130 / 135

With the Spike Response Model (SRM)

In continuous time, we obtain from OLPOMDP (Florian 2007))

dwij(t)
dt = αr(t)zij(t)

τz
dzij(t)
dt = −zij(t) + ξij(t)

ξij(t) = (Φi (t)
ρi (t) − 1)ρ′i (t)

∑
f
εij(t − t̂i , t − t f

j)

where Φi (t) =
∑

f δ(t − t f
i) is the post spike train

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 131 / 135

With the Spike Response Model (SRM)

If a spike at t f
i follows a spike at t f

j , ∆z at t f
i with

∆z = 1
τz

ρ′i (t f
i)

ρi (t f
i)
εij(t f

i − t̂i , t f
i − t f

j)

After a complete decay, with a constant r ,

∆w = αr∆zτz

Synaptic changes are modulated by the reinforcement signal r(t)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 132 / 135

modulated STDP with eligibility trace
With some additional simplifications, with an exponential learning window :

dwij(t)
dt = αr(t)zij(t)

τz
dzij(t)
dt = −zij(t) + ξij(t)

ξij(t) = Φi (t)A+
∑

f
exp(−

t − t f
j

τ+
) + Φj(t)A−

∑
f

exp(− t − t f
i

τ−
)

Dropping the eligibilty trace :

dwij(t)
dt = αr(t)ξij(t)

which has to be compared to the standard STDP model

dwij(t)
dt = αξij(t)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 133 / 135

Conclusions

interesting perspectives for deep RL with spiking neural networks
RL might provide some cues for better understanding biological NN
need to integrate hierarchical network representations
discrete event system modelling and simulation could help in
analysing neural plasticity

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 134 / 135

2020 M2 internship

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 135 / 135

	Introduction
	Sequential decisions
	Markov Decision Problems
	Reinforcement Learning
	Generalisation in RL
	RL with spiking neural networks
	

