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Minicours objectives and contents

This course aims at introducing the Reinforcement Learning approach and
its application to learning in spiking networks.

Course 1 Introduction
Sequential decision making under uncertainty
Markov Decision Problems in finite and infinite horizons
Reinforcement Learning

Course 2 Generalization in Reinforcement Learning
Reinforcement Learning and Spiking Neural Networks
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The problem of reinforcement learning
An autonomous agent exploring his environment, in order to learn a
behavior that maximizes the rewards he receives.

ENVIRONNEMENT

STRATEGIE

ACTIONS

OBSERVATIONS
+

RECOMPENSES
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What types of applications ?

RL started with control problems, quite toy problems, like the mountain
car :

BUT

the car can accelerate in both directions
the goal is to reach the top of the hill, as fast as possible
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What types of applications ?

Historically, and more recently, games :

checkers, backgammon
tetris
go, chess
arcade games (atari2600)
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What types of applications ?

Also very typical, autonomous robotics :

robotic arms, factory robotics
mobile robotics, autonomous car driving
humanoid robots
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What types of applications ?

Recently, more serious applications :

allocation and scheduling of ressources
traffic light control
web system configuration
bidding and advertising
autonomous car driving
crop management
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Twofold objective of RL

Control the systeme optimally
Learn this optimal policy by trial and error

First point well studied with the theory of optimal control and sequential
decisions under uncertainty (Hamilton-Jacobi-Bellman or Bellman
equations, 1954)

Reinforcement learning (Samuel 1959, Minsky 1964, Widrow 1973,
Holland 1975, Sutton 1984) is an extension of these works to the online
paradigm, for very large problems
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decision theory

Decision theory is about human decision making in a world of incomplete
information.
In decision theory, a cognitive decision maker plays against a randomizing
nature.

Expected Utility (EU) theory, introduced by von Neuman and Morgenstern
in 1944, is the dominant theory of economic choice
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decisions theory

The three fundamental concepts of decision theory are acts, states of
nature and outcomes.

Acts are under the control of the decision maker, who has to choose
one act from a given set of possible acts A = {a1, a2, ...aA}

States of nature are under the control of nature, and are
probabilistically selected by nature from a set S = {s1, s2, ...sS}. They
represent the circumstances about which there is uncertainty
When the act has been chosen and the state has been selected, the
outcome o = F (a, s) is determined, where F is the outcome mapping.
The set of possible outcomes is
O = F (A,S) = {F (a, s) | a ∈ A, s ∈ S}

Acts, states and outcomes can be complex objects, but decision theory
only consider them as set elements.
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state and outcome probabilities

In decision making under risk, or decisions under uncertainty, we assume
that for each possible act a, the decision maker is able to define a
probability distribution Pa over the states of nature :

Pa = {p1, p2, ..., pS}, with pi = P(si | a) and p1 + p2 + ...+ pS = 1

This leads to probability distributions Qa over the the set of possible
outcomes :

Qa = {q1, q2, ..., qO}, with qj = P(oj | a) =
∑

i
pi | oj = F (a, si )
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Outcomes, and Lotteries

Decision theory assumes that outcomes are the only thing decision maker
cares about when taking its decision. So it is assumed that the decision
maker has preferences over outcomes and only over outcomes.

In decision theory, an action is thus represented by a lottery :

L = {O,Q},

with O = {o1, o2, ..., oO}, Q = {q1, q2, ..., qO} and
∑

j qj = 1

Axioms of utilty theory constrain the possible patterns of preference
between lotteries a decision maker can exhibit.
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The expected utility theorem

Any preference pattern following these axioms can be represented by a
real-valued function U on the set of outcomes O, such that

L1 � L2 iff U(L1) ≥ U(L2)

with
U({{o1, o2, ..., oO}, {p1, p2, ..., pO}}) =

∑
i
piU(oi )
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The utility value function and attitudes toward risk

The utility function U is unique up to a positive linear transformation
U ′ = aU + b
For instance, U(ob) = 1 and U(ow ) = 0

For continuous outcomes (money, time, etc.) U can be normally described
by a continuous function u(x)

U concave : risk averse
u(
∑

i pioi ) ≥
∑

i piu(oi )
U convex : risk seeking

u(
∑

i pioi ) ≤
∑

i piu(oi )
U linear : risk neutral

u(
∑

i pioi ) =
∑

i piu(oi )
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Maximising expected utility

With the EU theory, the best action is the one that maximizes the utility
of its corresponding lottery

Ua∗ = max
a∈A

U(La)

= max
a∈A

U({O,Qa})

= max
a∈A

∑
j
P(oj | a)U(oi )

= max
a∈A

∑
i
P(si | a)U(F (a, si ))

= max
a∈A

E [U(F (a, s) | a)]
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One-step decision making

Decision theory is about one-step decision making

Ua∗ = max
a∈A

E [U(F (a, s) | a)]

a

s

U
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Multi-step decision making

The theory of sequential decision making under uncertainty is about
multi-step decision making

a1

s

U

a2

s

U

a3

s

U

aT

s

U

t=1 t=2 t=3 t=T
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Some new problems to consider

A sequential decision making problem is not just a set of independent
one-step decision making problems. How to formalize the relations
between these individual problems ?
How to aggregate the utilities of successive outcomes ? What new
choice criteria can we consider ?
How to represent decisions in sequential setting, what kind of optimal
solutions can we expect : sets of acts, plans, decision rules, policies,
behaviors... ?
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Planning with decision trees
An explicit tree-based representation of all possible scenarios (tree paths)
from the initial situation (root) to final outcomes (leaves), through
decision nodes and chances nodes
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Solving decision trees

A foldback analysis, from the leaves to the root

the utility value of a leaf is its outcome’s value U(l)
the utility value of a chance node is the expected utility of its
successors

U(c) =
∑

n∈succ(c)
p(c → n)U(n)

the utility value of a decision node is the maximum utility of its
successors

U(d) = max
n∈succ(d)

U(n)
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Solving decision trees
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Here the optimal solution is the sequence < a3, a32 >, with U∗ = 7.5
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Solving decision trees

Changing some probabilities or out-
come values can lead to different
optimal solution structures...
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The new optimal solution is a conditional plan : < a1,
node11 → a11
node12 → a13

>
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Limits of decision trees

do not allow independence or correlation relations to be exploited
grow exponentially with problem size, complexity in O((AO)T )
unnatural representation of conditional probabilities

Markov Decision Processes are a better framework !
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What are MDPs ?

MDP = Markov Decision Processes, or also Markov Decision Problems
(Putterman 1994)

1 A mathematical framework for modeling optimal decision problems
2 A family of algorithmic methods for solving these optimization

problems

A simple and efficient modelling and optimisation framework, a
theoretically grounded decision approach, an extendable formalism that
can be modified and adapted.
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From decision trees to MDP

With finite-horizon MDP, decision trees are transformed so that

to each decision node is associated a state, the state of the system
just before taking the decision
chance nodes and random events ω are represented by transitions
between states
state transition probabilites are assumed to be Markovian
rewards are associated to state transitions, not only to final states
(leaves), and rewards are additive
optimal solutions are decision rules statei → actionj at each decision
stage t = 1, ...,T
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Coupling one-step decision making problems

a1

s2

r1
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sT+1

rT

t=1 t=2 t=3 t=T

U
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finite-horizon MDP definition

We define a finite-horizon MDP as < S,A,P,R, h,T > :

a set of states S
a set of actions A
transition probabilities P = {Pa, a ∈ A}
transition rewards R = {Ra, a ∈ A}
a terminal reward function h
a problem horizon T

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 31 / 135



Markov decision processes

A

1 2 3 4

T

S
s s

a2

a1

a

s’

p (s’ | s, a)
t

t

t t+1

r (s, a)
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Backward value iteration

Markov property and reward additivity make possible calculus
decomposition with a dynamic programming approach
For a general < S,A,P,R, h,T > MDP

∀s ∈ S V ∗0 (s) = hs

∀s ∈ S V ∗t (s) = max
a∈A

∑
s′∈S

P(s ′ | s, a)(r(s, a, s ′) + V ∗t−1(s ′))


for t = 1, ...,T .

Computational complexity in O(TAS2)
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Backward value iteration with average rewards

Defining
r(s, a) =

∑
s′∈S

P(s ′ | s, a)r(s, a, s ′),

we’ve got :

∀s ∈ S V ∗0 (s) = hs

∀s ∈ S V ∗t (s) = max
a∈A

r(s, a) +
∑
s′∈S

P(s ′ | s, a)V ∗t−1(s ′)


for t = 1, ...,T .
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Finite-horizon optimal policies

The optimal solution is a sequence of policies π∗t , t = 1, ...,T , which are
decision rules from S to A :

∀s ∈ S π∗t (s) ∈ argmax
a∈A

∑
s′∈S

r(s, a) + P(s ′ | s, a)V ∗T−t(s ′)


The optimal policy is

Markov (only depends on the current state)
deterministic (always the same action in the same state)
non-stationay (the best action depends on the decision stage t)
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Policy families

policy πt deterministic stochastic
Markov st −→ at at , st −→ [0, 1]

History-dependent ht −→ at ht , st −→ [0, 1]

where ht = (s1, a1, s2, . . . , st−1, at−1, st)
Stationary policies are such that ∀t πt = π
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Value functions and finite-horizon criterion

The optimal policy π∗ calculated with backward value iteration maximizes
the T−step value function V π

T , from S to R :

V π
T (s) = E

[t=T∑
t=1

r(st , at , st+1) | s1 = s, πt

]

V π
T (s) is the expected value of the the sum of rewards when starting in s

and following the policy π during T steps
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Maximizing value functions

Natural partial order on value functions V π
T ∈ RS :

∀U,V ∈ RS U � V ⇔ ∀s ∈ S U(s) ≤ V (s).

But the optimal solution π∗ is the same for any initial state s at time
t = 1 :

∀π ∈ Π ∀s ∈ S V π
T (s) ≤ V π∗

T (s)

One can write V ∗T = maxπ∈Π V π
T = V π∗

T
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Computing value functions with backward iteration

For a given policy π = (π1, . . . , πT ), its value function V π
T can be

calculated by :

∀s ∈ S V π
0 (s) = hs

∀s ∈ S V π
t (s) =

∑
s′∈S

r(s, πT−t+1(s)) + P(s ′ | s, πT−t+1(s))V π
t−1(s ′)

for t = 1, ...,T .

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 39 / 135



Turnpike planning horizon theorem

Optimal policy π∗ and optimal value function V ∗T are non-stationary.

However, there exists some H such that ∀T > H, π∗1/T = π∗1/H

For a given MDP problem, the optimal decision at the first stage will be
same for any longer planning horizon than the Turnpike planning horizon.
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MDP with infinite horizon

Why infinite horizon ?

a good approximation for large planning horizon
leads to stationary optimal solutions (cf. turnpike theorem)
efficient algorithms
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Optimality criteria with infinite horizon

For a given policy π one can consider :
The total reward criterion

V π(s) = E
[ ∞∑

t=1
r(st , at , st+1) | s1 = s, π

]

The average reward criterion

ρπ(s) = lim
n→∞

E
[
1
n

n∑
t=1

r(st , at , st+1) | s1 = s, π
]

The γ-discounted criterion

V π
γ (s) = E

[ ∞∑
t=1

γt−1r(st , at , st+1) | s1 = s, πt

]
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Optimality criteria with infinite horizon

Total reward criterion can be used with finite unbounded horizon, like
optimal stopping problems. Otherwise the existence of V π(s) is not always
guaranteed

Average reward criterion reflects the average value of the rewards per step
along the trajectory, and is used in many cyclical tasks like queueing
control or communication network problems.

The theoretical analysis of these two criteria is more complex than for the
discounted criterion, although there exist some efficient corresponding
optimization algorithms
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The γ-discounted criterion

The most commonly used criterion in infinite horizon

For an MDP < S,A,P,R, γ > we look for π∗ such that :

∀π ∀s ∈ S V π
γ (s) ≤ V π∗

γ (s)

with
V π
γ (s) = E

[ ∞∑
t=1

γt−1r(st , at , st+1) | s1 = s, πt

]
This value function always exists for 0 ≤ γ < 1
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The discount factor γ

The factor γ can be interpreted as

the value at time t of a unit reward perceived at time t + 1. In
economy, γ = 1

1+r , where r is the discount rate, or interest rate ;
the subjective probability that the decision problem will end before
the next period

One assumes that decision stages are regularly dispatched on the temporal
axis

The discount factor is part of the decision model
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Computing the value function V π
γ

For a given stationary Markov policy π, the discounted value function V π
γ

is unique solution of the following fixed-point equation :

∀s ∈ S V π
γ (s) =

∑
s′∈S

P(s ′ | s, π(s))(r(s, π(s), s ′) + γV π
γ (s ′))

or, with r(s, a) rewards :

∀s ∈ S V π
γ (s) = r(s, π(s)) + γ

∑
s′∈S

P(s ′ | s, π(s))V π
γ (s ′)
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With vector and matrix notations

We denote by Pπ the matrix of the P(s ′ | s, π(s)) probabilities, and by Rπ
the vector of the r(s, π(s)) rewards. Pπ and Rπ can be built line after line
from π and the matrices Pa and Ra
The fixed-point equation becomes :

V π
γ = Rπ + γPπV π

γ

Its solution is given by

V π
γ = (I − γPπ)−1Rπ

(I − γPπ)−1 exists for γ < 1 because Pπ is a probability matrix.
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A fixed-point iterative approach

An Iterative approach :

Vn+1 = Rπ + γPπVn,

or equivalently

∀s ∈ S Vn+1(s) = r(s, π(s)) + γ
∑
s′∈S

P(s ′ | s, π(s))Vn(s ′)

until ‖Vn+1 − Vn‖ < ε

Vn converges toward V π
γ , ∀V0 ∈ R
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Bellman’s optimality equation

Recall the backward iteration algorithm in finite horizon :

∀s ∈ S V ∗0 (s) = hs

∀s ∈ S V ∗t (s) = max
a∈A

∑
s′∈S

P(s ′ | s, a)(r(s, a, s ′) + V ∗t−1(s ′))


In infinite horizon, we’ve got at the limit :

∀s ∈ S V ∗∞(s) = max
a∈A

∑
s′∈S

P(s ′ | s, a)(r(s, a, s ′) + γV ∗∞(s ′))


This is the Bellman’s equation, with its unique solution V ∗γ = V ∗∞
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Solving the Bellman’s optimality equation

3 main approaches :

value iteration
policy iteration
linear programming
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value iteration

An Iterative approach on value function

Vn+1 = max
a
{Ra + γPaVn},

or equivalently

∀s ∈ S Vn+1(s) = max
a
{r(s, a) + γ

∑
s′∈S

P(s ′ | s, a)Vn(s ′)}

until ‖Vn+1 − Vn‖ < ε

Vn converges toward V ∗γ , ∀V0 ∈ R
πn converges toward π∗, ∀V0 ∈ R

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 51 / 135



policy iteration

An iterative approach on policies

πn+1 = argmax
a
{Ra + γPaV πn},

until πn+1 = πn

fast convergence toward π∗, ∀pi0
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linear programming

Solve :
min

V

∑
s∈S

V (s)

with :

V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s ′ | s, a)V (s ′), ∀s ∈ S, a ∈ A

Polynomial in S, A
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Value function approximation

We have seen exact methods where optimal value functions are exactly
computed.
In practice, for large-size problems, the perfect representation of these
functions is impossible.

We need to approximate these functions (Bertsekas and Tsitsiklis 1996)
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Value function approximation

Important result :
V from S to IR, and π a policy "greedy" w.r.t. V :

∀s ∈ S π(s) = argmax
a
{r(s, a) + γ

∑
s′∈S

P(s ′ | s, a)V (s ′)}

Then
‖V ∗γ − V π

γ ‖ ≤
2γ

1− γ ‖V − V ∗γ ‖

This justifies the search for a good approximation of the optimal value
function
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Value function approximation

linear approximation with features

Vξ(s) = ξ(1)ψ1(s) + · · · ξ(K )ψK (s)

where ψi () are K features from S to R
non linear approximation, neural networks
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Value function approximation

Approximate value iteration algorithm :

Vn+1 = A
(

max
a
{Ra + γPaVn}

)
,

until ‖Vn+1 − Vn‖ < ε,
where A is a projection operator on the set of approximate value functions

Approximate policy iteration algorithm :
- Approximation : compute Vn an approximation of V πn

γ

- Improvement :
πn+1 = argmax

a
{Ra + γPaVn},

One can show that

lim
n→∞

‖V ∗γ − V πn
γ ‖ ≤

2γ
(1− γ)2 lim

n→∞
‖Vn − V πn

γ ‖
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Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks
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Reinforcement Learning ...
An autonomous agent exploring his environment, in order to learn a
behavior that maximizes the rewards he receives.

ENVIRONNEMENT

STRATEGIE

ACTIONS

OBSERVATIONS
+

RECOMPENSES
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What’s new ?

Reinforcement Learning goes beyond dynamic programming in two ways :

learning an optimal policy from experience
(staten, actionn, staten+1, rewardn)

solving decision problems with large dimensions by parameterizing
value functions or policies.

(Sutton and Barto 1998)
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3 types of machine learning

Supervised learning
learning from a teacher
with labelled exemples
generalizing

Unsupervised learning
learning from similarities
with unlabelled exemples
finding structure

Reinforcement learning
learning by interaction
with trial and error
optimizing behavior
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Real-Time Dynamic Programming

RTDP algorithm : learning the optimal value function with value iteration,
with update in the current state :
After each transition,

(sn, an, sn+1, rn)

Vn+1 ← Vn

Vn+1(sn) ← max
a
{r(sn, a) + γ

∑
s′

p(s ′ | sn, a)Vn(s ′)}
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Choice of transitions

Current state sn is the resulting state of the last transition (real-time
constraint)
The choice of an is directed by the current value function Vn :

an = argmax
a
{r(sn, a) + γ

∑
s′

p(s ′ | sn, a)Vn(s ′)}

Optimistic algorithm
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Adaptive RTDP

The MDP model is estimated on-line

p(s ′|s, a) ←
ns′

s,a
ns,a

r(s, a) ← rn

and an visits A (exploration)
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Q-learning

(Watkins 1999)

No use of the MDP model
Learning of the optimal value function following value iteration principle
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The Q-value function

Without model, V ∗ is not sufficient to define the corresponding optimal
policy

π∗(s) = argmax
a
{r(s, a) + γ

∑
s′

p(s ′ | s, a)V ∗(s ′)}

We thus try to learn the Q-value function :

Q∗(s, a) = r(s, a) + γ
∑
s′

p(s ′ | s, a)V ∗(s ′)

We have

π∗(s) = argmax
a

Q∗(s, a) et V ∗(s) = max
a

Q∗(s, a)
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The Q-value function

s, a

V ∗(s ′′)

V ∗(s ′)

��
�
�*

HHH
Hj

p

1− p
s, a′

V ∗(s ′′)

V ∗(s ′)

��
�
�*

HHH
Hj

q

1− q

Q∗(s, a) = r(s, a) + γ{pV ∗(s ′) + (1− p)V ∗(s ′′)}
Q∗(s, a′) = r(s, a′) + γ{qV ∗(s ′) + (1− q)V ∗(s ′′)}

π∗(s) = argmax
a,a′

{Q∗(s, a), Q∗(s, a′)}
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Q-Learning principle

Value iteration

Vn+1(s) ← max
a

Qn(s,a)︷ ︸︸ ︷
{r(s, a) + γ

∑
s′

p(s ′ | s, a)Vn(s ′)}

⇒ Qn+1(s, a) = r(s, a) + γ
∑
s′

p(s ′ | s, a)Vn+1(s ′)}

Qn+1(s, a) ← r(s, a) + γ
∑
s′

p(s ′ | s, a) max
a′

Qn(s ′, a′)

For the pair (sn, an), we estimate the sum by

rn + γmax
a′

Qn(sn+1, a′)
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Q-learning algorithm

After each transition,
(sn, an, sn+1, rn)

Qn+1 ← Qn

δn ← rn + γmax
a′

Qn(sn+1, a′)− Qn(sn, an)

Qn+1(sn, an) ← Qn(sn, an) + αnδn

with limn→∞ αn = 0 (e.g. 1
n ou 1

ns,a
)
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Stochastic approximation and Q-learning

Bellman equation :

V ∗(s) = max
a

∑
s′

p(s ′ | s, a){r(s, a, s ′) + γV ∗(s ′)}, ∀s

Equivalently,

V ∗(s) = max
a

Q∗(s, a), ∀s

Q∗(s, a) =
∑
s′

p(s ′ | s, a){r(s, a, s ′) + γmax
a′

Q∗(s ′, a′)}, ∀s, a

Q∗(s, a) = E [r(s, a, s ′) + γmax
a′

Q∗(s ′, a′)], ∀s, a
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Stochastic approximation and Q-learning

Let ξ = (s, a, r , s ′), and H(Q, ξ)s,a = (r + γmaxa′ Q(s ′, a′)− Q(s, a))
Then

E [H(Q∗, ξ)] = 0

The Robbins-Monro algorithm gives directly

Qn+1 = Qn + αnH(Qn, ξn)

that is

Qn+1(sn, an) = Qn(sn, an) + αn(rn + γmax
a′

Qn(sn+1, a′)− Qn(sn, an))
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Q-learning convergence

For a good decrease rate of αn to 0 (e.g. 1
n ou 1

ns,a
), and if all state-action

pairs of S × A are infinitely visited, then Q-learning converges to Q∗ with
probability = 1.
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The Exploration / Exploitation dilemna

Le choix de l’état est souvent lié à la dynamique.
Pour l’action, une démarche optimiste consiste à choisir à chaque itération
la meilleure action courante

an = argmax
a

Qn(sn, a)

Plus raisonnablement, il convient de régulièrement choisir une action
aléatoire dans A.
On utilise ainsi des fonctions d’exploration dirigées ou non-dirigées

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 73 / 135



Fonctions d’exploration non-dirigées

suivre Qn pendant N1 transitions, puis tirer uniformément dans A
pendant N2 transitions
à chaque itération suivre Qn avec une probabilité τ , ou tirer
uniformément dans A avec une probabilité 1− τ
tirer an dans A selon

pT (a) = e−
Qn(sn,a)

T∑
a′ e−

Qn(sn,a′)
T

avecT →
∞

0
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Guided exploration policies

On utilise l’information accumulée au cours de la recherche, autre que Qn.
En pratique, on ajoute à Qn un bonus d’exploration et on choisit la
fonction qui maximise cette somme.
Exemple de bonus

la recency based method : Qn(s, a) + ε
√

(Ts,a)
Ts,a est le nombre d’itérations depuis le dernier choix de a dans s
la uncertainty estimation method : Qn(s, a) + ε/ns,a

UCB1 (regret minimization) : Qn(s, a) +
√
2log(n)/(ns,a
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On-Policy and Off-Policy learning rules

Dans le Q-learning, la politique d’exploration intervient juste pour générer
les expériences ξ = (sn, an, rn, sn+1) (Off-policy)

Qn+1(sn, an) = Qn(sn, an) + αn(rn + γmax
a′

Qn(sn+1, a′)− Qn(sn, an))

L’algorithme SARSA adapte la règle d’apprentissage en prenant en compte
explicitement la politique d’exploration et l’action an+1 (On-policy) :

Qn+1(sn, an) = Qn(sn, an) + αn(rn + γQn(sn+1, an+1)− Qn(sn, an))

Sarsa converge également vers Q∗
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Joint learning of a value fuction and a policy

Dans le Q-learning, la politique apprise est directement liée à la fonction Q
apprise.
Il est aussi possible de gérer explicitement une suite de politiques πn et une
suite de fonctions de valeur Vn. On suit alors le même principe que dans
l’algorithme de policy iteration
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Principe des actor-critic methods

On maintient πn (action network) et Vn (critic network)
Après chaque transition (sn, an, sn+1, rn)

(p(s ′ | s, a) et r(s, a) sont mis à jour)
Vn est mise à jour
πn est améliorée

Est souvent associé à une représentation paramétrée de Vn et πn (voir plus
loin).
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Apprentissage de la
fonction de valeur d’une politique

La valeur normale de Vn devrait être Vπn . Différentes méthodes
permettent de l’approcher

maximum de vraisemblance : calcul de Vπn sur la base des estimées
p() et r() ; peu efficace
Monte Carlo
Programmation Dynamique
TD(λ)
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Méthode de Monte Carlo
Dans le cadre γ = 1 avec état absorbant
Pour une politique π fixée
On observe (s0, . . . , sN) et (r0, . . . , rN−1)

s_k

s_k+1

s_N

s_1

s_2

s_N-1

s_0

r_0

r_1

r_2

r_k-1

r_N-1

r_k+2

r_k

r_N-2

0

s_k+2

r_k+1
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Algorithmes off-line / on-line

A la fin de chaque trajectoire, on met à jour les N valeurs V (sk) par

V (sk)← V (sk) + α(rk + rk+1 + · · ·+ rN−1 − V (sk))

On peut aussi modifier V après chaque transition (sk , sk+1, rk), en
utilisant les différences temporelles :

rk + rk+1 + · · ·+ rN−1 − V (sk) = dk + dk+1 + · · ·+ dN−1

avec dk = rk + V (sk+1)− V (sk)

V (sl )← V (sl ) + αdk , l = 0, . . . , k
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La méthode de la programmation dynamique

On peut aussi chercher à résoudre stochastiquement le système
d’équations linéaires définissant V :

V (s) = r(s, π(s)) +
∑
s′

p(s ′ | s, π(s))V (s ′)}

Après chaque transition (sk , sk+1, rk)

V (sk) ← V (sk) + α(rk + V (sk+1)− V (sk))
← V (sk) + αdk
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La méthode des différences temporelles (TD(λ))

TD(λ) est un compromis entre les deux précédentes méthodes
Pour une trajectoire observée (s0, . . . , sN) et (r0, . . . , rN−1) la fonction de
valeur courante V est mise à jour selon

V (sk)← V (sk) + α
m=N−1∑

m=k
λm−kdm, k = 0, . . . ,N − 1

λ = 0 : méthode de la programmation dynamique
λ = 1 : méthode de Monte Carlo

La convergence presque sûre est assurée.
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Comparaison entre Monte Carlo
et Programmation Dynamique (TD(0))

A B

r=1

r=0

(A, 0, B, 0)
(B,1)
(B,1)
(B,1)

(B,1)
(B,1)
(B,1)
(B,0)

75%

25%100%

Que vaut V (B) ? et V (A) ?
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Comparaison entre Monte Carlo
et Programmation Dynamique (TD(0))

V (B) ≈ 3
4

V (A) ≈ 0 pour Monte Carlo
V (A) ≈ 3

4 pour TD(0)

Monte Carlo minimise l’erreur quadratique sur les observations.
TD(0) maximise la vraisemblance de l’estimation.
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TD(λ) on-line

Après chaque transition (sk , sk+1, rk),

V (sl )← V (sl ) + αλk−ldk , l = 0, . . . , k

On utilise surtout une forme similaire de cet algorithme utilisant la notion
de trace d’éligibilité.

V (s)← V (s) + αzk(s)dk ∀s ∈ S
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Trace d’éligibilité accumulative

z0(s) = 0, ∀s ∈ S

zn(s) =
{
γλzn−1(s) si s 6= sn
γλzn−1(s) + 1 si s = sn

n

z(s)

1

dates des visites de l’état s

n
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Trace d’éligibilité avec réinitialisation

z0(s) = 0, ∀s ∈ S

zn(s) =
{
γλzn−1(s) si s 6= sn
1 si s = sn

1

dates des visites de l’état s

n

n

z(s)
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TD(λ) et Q-learning

Si TD(λ) est utilisé dans les méthodes de type policy iteration pour
évaluer une politique, il peut aussi être utilisé pour améliorer le Q-learning
Après chaque expérience, ou transition (sn, an, sn+1, rn)

zn ← 0 si an 6= argmax
a

Qn(sn, a)

zn(sn, an) ← zn(sn, an) + 1
δn ← rn + γmax

a′
Qn(sn+1, a′)− Qn(sn, an)

Qn+1(s, a) ← Qn(s, a) + αnzn(s, a)δn

zn+1(s, a) ← γλzn(s, a)
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Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 90 / 135



Représentation de la fonction de valeur

Pour des problèmes discrets de faibles tailles, il est possible de représenter
V = V π ou V = V ∗ (ou Q) par un tableau état :valeur (look-up table).
L’apprentissage de V porte alors directement sur ses composantes.
Pour des problèmes de grande dimension ou à domaines continus, il est
nécessaire de passer par une représentation paramètrée

V = Vξ ou Q = Qξ

où ξ est un vecteur de paramètres de plus faible taille.
L’apprentissage porte alors sur ξ

ξn+1 = ξn + α∆(sn, an, sn+1, rn)
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Caractéristiques d’une architecture

la capacité d’approximation : on cherche à minimiser l’erreur intrinsèque
ε = minξ ‖V − Vξ‖ ;

la capacité de généralisation : on recherche des ξ de faible dimension
minimisant ε ⇒ les valeurs de plusieurs états seront
simultanément modifiées avec la présentation d’un seul
exemple ;

la simplicité de l’évaluation : selon la paramétrisation retenue, le calcul
pour un état s ∈ S de Vξ(s) peut être plus ou moins
coûteux ;

l’efficacité de l’apprentissage : selon ξ, la convergence n’est plus toujours
assurée, et les algorithmes peuvent devenir très complexes.
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Différentes architectures d’approximation

représentations différentiables
I linéaires
I réseaux neuronaux
I . . .

représentations non différentiables
I arbres de régression,
I règles de décision
I . . .
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Représentations différentiables

Il est naturel ici d’utiliser des méthodes de type descente de gradient
stochastique pour apprendre le vecteur de paramètres ξ

ξn+1 = ξn + αn(Rn − Vξn (sn))∇ξnVξn (sn)

où Rn est l’estimation directe tirée de l’expérience de la valeur de V en sn
(cf. Monte Carlo, TD(0) et TD(λ)).
Dans le cas général, seul Monte Carlo assure que cette règle de mise à jour
converge vers un optimum local pour

ε(ξ) =
∑
s∈S

(V (s)− Vξ(s))2

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 94 / 135



Les représentations linéaires

Vξ(s) = ξ(1)ψ1(s) + · · · ξ(K )ψK (s)

où les ψi () sont K fonctions de S dans R

∇ξnVξn (sn) = (ψ1(sn), . . . , ψK (sn))T

entraine

ξn+1(i) = ξn(i) + αn(Rn − Vξn (sn))ψi (sn), ∀i = 1, . . . ,K

Il existe un optimum unique ξ∗ pour l’erreur quadratique, et TD(λ)
converge nécessairement (mais non forcément vers ξ∗)
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Les fonctions de voisinage

On définit K régions Ri qui forment ensemble une couverture de S, et on
pose pour i = 1, . . . ,K ψi () = 11Ri () la fonction indicatrice de Ri

∀s ∈ S ψi (s) =
{

1 si s ∈ Ri
0 sinon

Exemple : state aggregation, où les Ri forment une partition de S.
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La méthode des CMAC
(cerebellar model articulator controller)

Méthode simple utilisée pour des espaces
continus de faible dimension
Principe : définir C partitions (ou grilles) de
S, décalées géométriquement les unes par
rapport aux autres
À chaque région de chaque grille, on associe
un poids ξ(i). La valeur d’un état s de S est
la somme des C poids des régions de chaque
grille qui le contiennent. Quadrillage #1

Quadrillage #2

d’états
espace
limite
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Les méthodes à base d’états représentatifs

On place K points si dans S, centres d’une région

s2

s1
s4

s3

La forme de la région est fixe, les recouvrements sont possibles
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Les méthodes à base d’états représentatifs

On peut aussi associer une valeur réelle dans l’intervalle [0, 1] fonction de
la distance au centre.
Exemple : les radial basis functions

∀s ∈ S ψi (s) = exp(−‖s − si‖
2σi 2

)

On peut alors apprendre aussi les meilleurs paramètres si et σi
(architecture non-linéaire)
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triangularisation de l’espace d’états
On triangularise S ⊂ Rn par les points si

s

On définit la fonction de valeur Vξ(s) en tout point s comme la
combinaison linéaire

Vξ(s) = λsi0
(s)Vξ(si0) + · · ·λsin (s)Vξ(sin )

où les λsij
(s) sont les coordonnées barycentriques du point s par rapport

aux n + 1 points si0 , ..., sin du simplexe qui le contient.
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Les fonctions coordonnées

On projette S dans un sous-espace RK , en définissant K nouvelles
coordonnées fonctions des anciennes.
Les nouvelles coordonnées résument le mieux possible les propriétés d’un
état vis-à-vis de la tâche à apprendre.
Exemple : Tétris. h × l variables d’états binaires ⇒ 2l + 1 coordonnées

les hauteurs hk des l colonnes

les différences | hk − hk+1 |

la hauteur maximale du mur maxk hk

le nombre de trous dans le mur
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Les fonctions heuristiques

Permet d’exploiter la connaissance de stratégies répondant partiellement
au problème
Les ψi () sont les fonctions de valeur associées à des politiques obtenues
par expertise ou par une première résolution approchée.

Vξ(s) = ξ(1)Vπ1(s) + · · · ξ(K )VπK (s)

Les Vπi est estimées par simulation, et elles-même paramétrées
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Approximations non-linéaires :
le perceptron multi-couches
L’architecture non-linéaire aujourd’hui la plus employée en apprentissage
par renforcement.

poids ω poids ωij k

entrées sortie

Pour un état s = (s(1), . . . , s(i), . . .), V (s) est approchée par
Vξ(s) =

∑
k
ωkσ (

∑
i
ωk,is(i))

avec (par exemple)
σ (x) = 1

1 + exp(−x)
Les perceptrons multi-couches sont une généralisation de ce principe avec
des réseaux où s’enchaînent couches linéaires et couches sigmoïdales.
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Apprentissage du perceptron multi-couches

poids ω poids ωij k

entrées sortie

Le vecteur ξ est constitué des poids ωi , ωjk , . . . du réseau.
L’apprentissage de ces poids est réalisé à partir de la règle de gradient.
Le calcul du terme de gradient ∇ξnVξn est effectué par des techniques de
rétro-propagation au sein du réseau.
Il existe de nombreux algorithmes d’apprentissage par renforcement
couplant Q-learning et/ou TD(λ) avec un perceptron (cf. deep RL).
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Apprentissage de structures non-différentiables

Toutes les structures des représentations précédentes doivent être adaptées
à la tâche à apprendre.
Il existe quelques algorithmes d’apprentissage par renforcement cherchant
à apprendre une telle résolution spatiale optimale.
Les méthodes de gradient ne sont plus adaptées : gradient tree boosting,
algorithmes évolutionnaires, etc.
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Calcul en ligne des politiques

Pour des problèmes de grandes dimension, le passage exacte en fin ou en
cours d’apprentissage de V ou Q vers a ou π peut être très coûteux et
doit être approché :

π̂(s) = argmin
a

Qω(s, a)

= argmin
a

∑
s′

p̂(s ′ | s, a){r(s, a, s ′) + γVω(s ′)}

= argmin
a

1
N

N∑
i=1
{r(s, a, s ′i ) + γVω(s ′i )}
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Online search by simulation

On peut également approcher π uniquement pour l’état courant, sur un
horizon H > 1 (Roll-out)

s
t

s
t−1

s
t−2

st−3

t−2 t−1 tt−3
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On-line resolution techniques

Iterative allocation of simulations

Possible pathology of the simulation-based forward search
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Policy approximation

Il est toutefois souvent intéressant d’approximer

πn(s) = argmax
a

Qn(s, a)

par une fonction paramètrée (action network)

πn = πθn

La dynamique de θn peut être alors être plus ou moins entrelacée à celle
de Vn ou Qn (actor-critic architecture).
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Direct policy search

Policy parameterization πθ(s), with θ ∈ Θ ⊆ Rp

we look for optimal parameters θ∗ that optimize the expected
performance

J(θ∗) = max
θ∈Θ

V πθ
γ ,

based on observed trajectories following πθ obtained by simulation
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Policy approximation

We typically consider stochastic policies, like :

πθ(s) = a with probability q(a | s; θ) ∀s

For instance :
q(a | s; θ) = θs,a∑

b θs,b
, , θs,a ≥ 0

q(a | s; θ) = exp θ.φ(s, a)∑
b exp θ.φ(s, b)

with
φ(s, a) = (φ1(s, a), . . . , φp(s, a))

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 111 / 135



Policy gradient and one-step MDP

One step MDP (T = 1), random initial state following µ(s)

J(θ∗) = max
θ

E [r(s, a, s ′)]

Score function method

∇E [r(s, a, s ′)] = ∇

∑
s,a,s′

µ(s)q(a|s; θ)p(s ′|s, a)r(s, a, s ′)


=

∑
s,a,s′

[∇q(a|s; θ)
q(a|s; θ) r(s, a, s ′)

]
µ(s)q(a|s; ~θ)p(s ′|s, a)

= E
[∇q(a|s; θ)

q(a|s; θ) r(s, a, s ′)
]
.
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Policy gradient and one-step MDP

With q(a | s; θ) = exp θ.φ(s,a)∑
b exp θ.φ(s,b) :

1
q(a|s; θ)

∂q(a|s; θ)
∂θi

= φi (s, a)−
∑

b
φi (s, b)q(b|s; θ),

thus

∇q(a|s; θ)
q(a|s; θ) = φ(s, a)−

∑
b

q(b|s; θ)φ(s, b)

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 113 / 135



Policy gradient and MDP

Horizon T ≥ 1

J(θ∗) = max
θ

E [r(s0, a0, s1) + γr(s1, a1, s2) + · · ·+ γT−1r(sT−1, aT−1, sT )]

A similar approach leads to

∇J(θ) = ∇E [
T−1∑
t=0

γtrt ] = E
[T−1∑

t=0
γtrt

t−1∑
t′=0

∇q(at′ |st′ ; θ)
q(at′ |st′ ; θ)

]
Make possible sampling approaches and online methods with trace
eligibilities

zt =
t−1∑
t′=0

∇q(at′ |st′ ; θ)
q(at′ |st′ ; θ)

Many policy gradient algorithms !
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Policy gradient and MDP

Infinite horizon, Bellman equation :

Vθ(s) =
∑

a
q(a|s; θ)

∑
s′

p(s ′|s, a)(r(s, a, s ′) + γVθ(s ′))

Then we have

∇Vθ(s) = E
[ ∞∑

t=0
γt∇q(at |st ; θ)

q(at |st ; θ) Qθ(s, a)|s0 = s
]

thus

∇J(θ) =
∑

s
µ(s)∇Vθ(s)

=
∑

s
µγθ (s)

∑
a
∇q(a|s; θ)Qθ(s, a)
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Actor-critic methods

Use of an approximate value function Qω(s, a), estimated during
simulation
Compatibilty criterion between parameters ω and θ

∇Qω(s, a) = ∇q(a|s; θ)
q(a|s; θ)

For instance with q(a | s; θ) = exp θ.φ(s,a)∑
b exp θ.φ(s,b) :

Qω(s, a) = ω.(φ(s, a)−
∑

b
q(b|s; θ)φ(s, b))

Qω linéaire en φi
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Deep Reinforcement Learning

Outperforms all previous state-of-the-art methods
neural networks to estimate Qω or πθ
unstable : target network, experience replay,
asynchronous methods
deep Q-learning (DQN, ...)
deep policy gradient and actor-critic
methods (DDPG, A3C, ACER, ...)
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Plan

1 Introduction

2 Sequential decisions

3 Markov Decision Problems

4 Reinforcement Learning

5 Generalisation in RL

6 RL with spiking neural networks

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 118 / 135



Spiking neurons

next generation of neural networks
biologically realistic models of neurons
discrete events rather than continuous
values
many neuronal models :
Hodgkin-Huxley (micro), Leaky
Integrate-and-Fire, Spike Response
Model, Thorpe Model (macro), etc.
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Leaky integrate-and-fire neurons

Voltage membrane potential v , excitatory input current I

τm
dv(t)
dt = vrest − v(t) + R.I(t)

When v reaches a threshold vth, the neuron fires a spike and v is reset to
vrest .
A synaptic model of the excitatory input current I of a neuron :

I(t) =
∑

j
wj
∑

f
ε(t − t f

j )

where wj is the connection strength of the synapse from neuron j , t f
j the

firing times and ε() the time response of the spike.
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Learning in spiking neural networks

Like for traditional neural networks, and more generally for learning
systems, 3 different learning paradigms :

supervised learning
unsupervised learning
reinforcement learning

Explicit time dependence, asynchronous information processing, make
learning procedures more complex than for the classical perceptron
approach.
Promising results for unsupervised and supervised deep learning with
spiking neural networks
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Hebbian learning vs backpropagation

"Hebbian rule : when an axon of cell A persistently takes part
in firing cell B, some growth process or metabolic change takes
place to increase A’s efficacy as one of the cells firing B.” -
Donald Hebb, 1949

Hebbian learning corresponds to an unsupervised setting : no need of
external target
supervised learning relies typically of gradient based descent, to
modify synaptic weights with back propagation in order to minimize
the error between the network output and the desired target.
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STDP- Spike-Timing Dependent Plasticity

directly inspired by Hebb’s law.
synaptic changes dependent on the
relative timing of pre and post
synaptic spikes
with a learning window

∆wj =
∑

f

∑
n

W (tn − t f
j )

online implementation with traces

τ+
dzj
dt = −zj + A+

∑
f
δ(t − t f

j ) and τ−
dz
dt = −z + A−

∑
n
δ(t − tn)

many variants of STDP models
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STDP and Reinforcement Learning

How to model synaptic changes considering a global reward signal ?
Few propositions in the litterature for RL and spiking neuron networks,
more or less related to STDP (Gerstner 2000, Seung 2003, Xi & Seung
2004, Florian 2007, Takita & Hagiwara 2005, El-Laithy & Bogdan 2011,
etc.)
The difficulties are :

how to take into account the credit assignment problem ?
how to obtain a local biological plausible learning rule ?

Modulated STDP, with eligibility traces for hebbian learning and additional
"gating signals" like rewards, leads to "neo-hebbian three-factor" learning
rules (Gerstner at al. 2018)

∆wij = αzij r
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Back to MDP and RL frameworks

With STDP reinforcement learning, we want to learn the optimal synaptic
strengths wij when every neuron is an agent, and there is a global reward
rt for the whole network
The classical MDP and RL frameworks must be extended, e.g. :

TMDP, SMDP, GSMDP for time-dependence
DEC-MDP for decentralized decison-making
GMDP for graph-based representation
POMDP for partially observable states
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POMDP framework

MDP for state (x) - action (u)
probabilistic dynamics
reward r(x)
observation distribution νy (x)
prob. of observing y in state x
stochastic policy µu(y) prob. of
choosing action u for
observation y

Parameterized policy µu(y) = µ(θ, . . .)
we want to maximize J(θ) = limn→∞ Eθ

[
1
n
∑n

t=1 r(st)
]
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Direct RL approach (OLPOMDP, Baxter & Bartlett)

the trace
zt+1 = βzt + ∇µut (yt , θ)

µut (yt , θ) , with β ∈ (0, 1)

converges to a good estimate of ∇J(θ) when β close to 1
online approach :

θt+1 = θt + αrtzt+1, with α small learning rate

still valid in a multi-agent framework :

z i
t+1 = βz i

t +
∇µui

t
(y i

t , θ
i )

µui
t
(y i

t , θi )
θi

t+1 = θi
t + αrtz i

t+1
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A very simple spiking neural model

Stochastic spiking neuron model :
Actions : ut = 1 fire at time t, otherwise ut = 0
Potential vt =

∑
j wjuj

t−1
– wj is the connection strength of jth synapse
– uj

t−1 is the activity of jth presynaptic neuron
Firing probability P(ut = 1) = σ(vt) = 1

1+exp(−vt )
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RL of optimal fires

local RL rule :

zj,t+1 = βzj,t + (ut − σ(vt))uj
t−1

wj,t+1 = wj,t + αrtzj,t+1

Very similar to reward modulated STDP (cf. works by Florian et al.).
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With the Spike Response Model (SRM)

A more realistic neuron model with memory of past inputs

vi (t) = ηi (t − t̂i ) +
∑

j
wij
∑

f
εij(t − t̂i , t − t f

j )

where t̂i is the last spike and ηi the refractory response.
The neuron fires stochastically with

P(ui (t) = 1) = ρi (vi (t)− θi )

(escape noise model), with ρi the firing intensity (probability density)
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With the Spike Response Model (SRM)

In continuous time, we obtain from OLPOMDP (Florian 2007) )

dwij(t)
dt = αr(t)zij(t)

τz
dzij(t)
dt = −zij(t) + ξij(t)

ξij(t) = (Φi (t)
ρi (t) − 1)ρ′i (t)

∑
f
εij(t − t̂i , t − t f

j )

where Φi (t) =
∑

f δ(t − t f
i ) is the post spike train
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With the Spike Response Model (SRM)

If a spike at t f
i follows a spike at t f

j , ∆z at t f
i with

∆z = 1
τz

ρ′i (t f
i )

ρi (t f
i )
εij(t f

i − t̂i , t f
i − t f

j )

After a complete decay, with a constant r ,

∆w = αr∆zτz

Synaptic changes are modulated by the reinforcement signal r(t)
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modulated STDP with eligibility trace
With some additional simplifications, with an exponential learning window :

dwij(t)
dt = αr(t)zij(t)

τz
dzij(t)
dt = −zij(t) + ξij(t)

ξij(t) = Φi (t)A+
∑

f
exp(−

t − t f
j

τ+
) + Φj(t)A−

∑
f

exp(− t − t f
i

τ−
)

Dropping the eligibilty trace :

dwij(t)
dt = αr(t)ξij(t)

which has to be compared to the standard STDP model

dwij(t)
dt = αξij(t)
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Conclusions

interesting perspectives for deep RL with spiking neural networks
RL might provide some cues for better understanding biological NN
need to integrate hierarchical network representations
discrete event system modelling and simulation could help in
analysing neural plasticity
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