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Minicours objectives and contents

This course aims at introducing the Reinforcement Learning approach and
its application to learning in spiking networks.

Course 1 @ Introduction

@ Sequential decision making under uncertainty

@ Markov Decision Problems in finite and infinite horizons
@ Reinforcement Learning
°
°

Course 2 Generalization in Reinforcement Learning

Reinforcement Learning and Spiking Neural Networks
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ACTIONS

An autonomous agent exploring his environment, in order to learn a
behavior that maximizes the rewards he receives.
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car

RL started with control problems, quite toy problems, like the mountain

BUT

@ the car can accelerate in both directions
@ the goal is to reach the top of the hill, as fast as possible
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What types of applications ?

Historically, and more recently, games :

@ checkers, backgammon
@ tetris
@ go, chess

e arcade games (atari2600)
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What types of applications ?

Also very typical, autonomous robotics :
@ robotic arms, factory robotics

@ mobile robotics, autonomous car driving
@ humanoid robots
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What types of applications ?

Recently, more serious applications :

@ allocation and scheduling of ressources
e traffic light control

@ web system configuration

@ bidding and advertising

@ autonomous car driving

o

crop management
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Twofold objective of RL

@ Control the systeme optimally

@ Learn this optimal policy by trial and error

First point well studied with the theory of optimal control and sequential
decisions under uncertainty (Hamilton-Jacobi-Bellman or Bellman
equations, 1954)

Reinforcement learning (Samuel 1959, Minsky 1964, Widrow 1973,
Holland 1975, Sutton 1984) is an extension of these works to the online
paradigm, for very large problems
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decision theory

Decision theory is about human decision making in a world of incomplete
information.

In decision theory, a cognitive decision maker plays against a randomizing
nature.

Expected Utility (EU) theory, introduced by von Neuman and Morgenstern
in 1944, is the dominant theory of economic choice
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The three fundamental concepts of decision theory are acts, states of
nature and outcomes.

@ Acts are under the control of the decision maker, who has to choose

one act from a given set of possible acts A = {a1, a2, ...aa}
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decisions theory

The three fundamental concepts of decision theory are acts, states of
nature and outcomes.

@ Acts are under the control of the decision maker, who has to choose
one act from a given set of possible acts A = {a1, a2, ...aa}

@ States of nature are under the control of nature, and are
probabilistically selected by nature from a set S = {s1, %, ...ss}. They
represent the circumstances about which there is uncertainty

@ When the act has been chosen and the state has been selected, the
outcome o = F(a, s) is determined, where F is the outcome mapping.
The set of possible outcomes is
O=F(AS)={F(a,s)|ac A seS}

Acts, states and outcomes can be complex objects, but decision theory
only consider them as set elements.
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state and outcome probabilities

In decision making under risk, or decisions under uncertainty, we assume
that for each possible act a, the decision maker is able to define a
probability distribution P, over the states of nature :

P, = {p1,p2,...,ps}, with p = P(s; | a)and p1 + po + ... + ps = 1

This leads to probability distributions Q, over the the set of possible
outcomes :

Q> ={q1,92,.-, 90}, with g; = P(o; | a) = Zp,!oj—Fas,)
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Outcomes, and Lotteries

Decision theory assumes that outcomes are the only thing decision maker
cares about when taking its decision. So it is assumed that the decision
maker has preferences over outcomes and only over outcomes.

In decision theory, an action is thus represented by a lottery :

L={0,Q},
with O = {01,02,...,00}, Q ={q1,92,..,90} and >, q; =1

Axioms of utilty theory constrain the possible patterns of preference
between lotteries a decision maker can exhibit.
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Any preference pattern following these axioms can be represented by a
real-valued function U on the set of outcomes O, such that

with

Ly = Ly iff U(Ly) > U(Ly)

U({{OL 02 -1y 00}7 {pla P2, .- PO}}) = ZPiU(Oi)
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The utility value function and attitudes toward risk

The utility function U is unique up to a positive linear transformation
U=aU+b

For instance, U(op) =1 and U(o,) =0

For continuous outcomes (money, time, etc.) U can be normally described
by a continuous function u(x)

u U concave : risk averse
’ u(2oipioi) = 32 piu(oi)

U convex : risk seeking
u(X2; pioj) < 32 piu(o;)

U linear : risk neutral

u(3; pioi) = >; piu(or)

outcome
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Maximising expected utility

With the EU theory, the best action is the one that maximizes the utility
of its corresponding lottery

Uy = max U(L,)
= Teaj( U({O7 Qa})
= rgeaz‘(%: P(o; | a)U(o;)
= TeaZ\(Z P(si | a)U(F(a, si))

= max E[U(F(a,s) | a)]
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Decision theory is about one-step decision making

Uz = max E[U(F(a;s) | 2)]
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multi-step decision making

The theory of sequential decision making under uncertainty is about

t=1

t=2

t=3

t=T
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Some new problems to consider

@ A sequential decision making problem is not just a set of independent
one-step decision making problems. How to formalize the relations
between these individual problems?

o How to aggregate the utilities of successive outcomes? What new
choice criteria can we consider ?

@ How to represent decisions in sequential setting, what kind of optimal
solutions can we expect : sets of acts, plans, decision rules, policies,
behaviors...?
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Planning with decision trees

An explicit tree-based representation of all possible scenarios (tree paths)

from the initial situation (root) to final outcomes (leaves), through
decision nodes and chances nodes
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Solving decision trees

A foldback analysis, from the leaves to the root

e the utility value of a leaf is its outcome’s value U(/)

@ the utility value of a chance node is the expected utility of its
SuCCessors

Ue)= 3 plc— n)U(n)

nesucc(c)

@ the utility value of a decision node is the maximum utility of its

SUCCessors
U(d) = max U(n)
n€succ(d)
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. @
@ .
Here the optimal solution is the sequence < a3z, asp >, with U* =7.5
«O>» «(Fr «Zr «E» = Q>
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Solving decision trees

Changing some probabilities or out-
come values can lead to different
optimal solution structures...

. L . nodey;; — a
The new optimal solution is a conditional plan : < az, 11 1
node12 — ai3
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Limits of decision trees

@ do not allow independence or correlation relations to be exploited
e grow exponentially with problem size, complexity in O((AO)")

@ unnatural representation of conditional probabilities

Markov Decision Processes are a better framework !
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What are MDPs ?

MDP = Markov Decision Processes, or also Markov Decision Problems
(Putterman 1994)
© A mathematical framework for modeling optimal decision problems
@ A family of algorithmic methods for solving these optimization

problems

A simple and efficient modelling and optimisation framework, a
theoretically grounded decision approach, an extendable formalism that
can be modified and adapted.
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From decision trees to MDP

With finite-horizon MDP, decision trees are transformed so that
@ to each decision node is associated a state, the state of the system
just before taking the decision

@ chance nodes and random events w are represented by transitions
between states

@ state transition probabilites are assumed to be Markovian

@ rewards are associated to state transitions, not only to final states
(leaves), and rewards are additive

@ optimal solutions are decision rules state; — action; at each decision
staget=1,..., T
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finite-horizon MDP definition

We define a finite-horizon MDP as < S, A, P, R, h, T > :

a set of states S

a set of actions A

transition rewards R = {R,, a € A}

°
°
e transition probabilities P = {P,, a € A}
°
@ a terminal reward function h

°

a problem horizon T
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Backward value iteration

Markov property and reward additivity make possible calculus

decomposition with a dynamic programming approach
For a general < 5, A, P,R, h, T > MDP

VseS Vy(s) = hs

VseS Vi(s) = max { > P(s'|s,a)(r(s.a,s") + Vf_l(s’))}

s'eS

fort=1,....T.

Computational complexity in O( TAS?)
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Defining
we've got :

r(s;a) =Y P(s'|s,a)r(s a.s'),
s'eS
VseS Vy(s)

hs

fort=1,...,T.

VseS Vi(s) = Tea,}{

r(s,a) + Z P(s' | s,a)Vi1(s)

s'eS }
«O> A Fr «=)r» «=)» = Q>



Finite-horizon optimal policies

The optimal solution is a sequence of policies 7y, t = 1,..., T, which are
decision rules from S to A :

Vs€S wi(s)€argmax{ > r(s,a)+ P(s | s,a)Vi_.(s)
acA s’'eS
The optimal policy is
@ Markov (only depends on the current state)
@ deterministic (always the same action in the same state)
@ non-stationay (the best action depends on the decision stage t)
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| policy 7; | deterministic |  stochastic |
Markov Sy — ar at, st — [0,1
History-dependent hy — a; he, s — [0, 1
Where ht = (517 a1, 82+« S5t—1,dt—1, St)
Stationary policies are such that Vtm; =7
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Value functions and finite-horizon criterion

The optimal policy m* calculated with backward value iteration maximizes
the T —step value function VI, from S to R :

t=T
Vi(s)=E r(se, at, se+1) | s1=s, ™
t=1

V7(s) is the expected value of the the sum of rewards when starting in s
and following the policy 7 during T steps
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VU,V e R®
t=1:

Natural partial order on value functions VX € RS :

UV&eV¥seS U(s) < V(s).

But the optimal solution 7* is the same for any initial state s at time
One can write VF = maxzen VT = V;T-*

Vrel VYseS VIs) < VE(s)
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For a given policy m = (71, ...,77), its value function VJ can be
calculated by :

VseS Vy(s) = hs

VseS§S V[i(s) =

Y (s mr—esa(s)) + P(s' | s, m7—e11()) VI (S)
s'eS

fort=1,...,T.
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Turnpike planning horizon theorem

Optimal policy 7* and optimal value function V7 are non-stationary.
However, there exists some H such that VT > H, ﬂi‘/T = 771‘/,_,

For a given MDP problem, the optimal decision at the first stage will be
same for any longer planning horizon than the Turnpike planning horizon.
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Why infinite horizon ?

@ a good approximation for large planning horizon
o efficient algorithms

@ leads to stationary optimal solutions (cf. turnpike theorem)
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Optimality criteria with infinite horizon

For a given policy m one can consider :
The total reward criterion

o
=E [Zf St7at7st+1) ‘ 51 =5, 7T‘|
t=1

The average reward criterion

[y

p"(s) = lim E[

n—oo

n
Z r(se, at, St+1) | 51 = s, 7T‘|

n t=1

The ~-discounted criterion

[Z’Y r(st, at, se+1) | 51 =5, 7Tt‘|

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019
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Optimality criteria with infinite horizon

Total reward criterion can be used with finite unbounded horizon, like
optimal stopping problems. Otherwise the existence of V™ (s) is not always
guaranteed

Average reward criterion reflects the average value of the rewards per step
along the trajectory, and is used in many cyclical tasks like queueing
control or communication network problems.

The theoretical analysis of these two criteria is more complex than for the
discounted criterion, although there exist some efficient corresponding
optimization algorithms
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The most commonly used criterion in infinite horizon

For an MDP < S, A, P, R,~ > we look for 7* such that :
Vo VseS VI(s)< VI (s)
with

o
V";'T(S) =E Zryt_lr(sta at7st+1) | 51 =S5, Tt
t=1

This value function always exists for 0 < vy < 1
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The discount factor

The factor v can be interpreted as

@ the value at time t of a unit reward perceived at time t 4+ 1. In

economy, v = ﬁ where r is the discount rate, or interest rate;

@ the subjective probability that the decision problem will end before
the next period

One assumes that decision stages are regularly dispatched on the temporal
axis

The discount factor is part of the decision model
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Computing the value function V.7

For a given stationary Markov policy m, the discounted value function V¥
is unique solution of the following fixed-point equation :

VseS V(s Z P(s" | s,m(s))(r(s,n(s),s) +'yV77r(s’))
s'eS

or, with r(s, a) rewards :

VseS VJi(s)=r(s,m(s)) +~ Z P(s' | s,m(s))VI(s)

s'eS

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019 46 /135



With vector and matrix notations

We denote by P, the matrix of the P(s’ | s,7(s)) probabilities, and by Ry

the vector of the r(s,n(s)) rewards. P, and R can be built line after line
from 7w and the matrices P, and R,

The fixed-point equation becomes :

VI = Ry + P, VT

Its solution is given by

VI =(I—yP:) 'R,

(I — yP;)~! exists for v < 1 because P is a probability matrix.
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An lterative approach :

or equivalently

Vn—|—1 = R7r +'YP7rVn;

Vs €S Vapi(s) =r(s,m(s)) +7 Y P(s' | s,7(s)) Va(s")
until Vo111 — Vil < e

s'eS

V,, converges toward V,;T YW eR
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Bellman’s optimality equation

Recall the backward iteration algorithm in finite horizon :

VseS Vy(s) = hs

VseS Vi(s) = max /ZE:SP(S, |'s,a)(r(s,a,s") + Vi 1(s))

In infinite horizon, we've got at the limit :

* — / / * /
VseS Vi(s)=max{ > P(s'[sa)(r(s,a,8) + V()

s'eS

This is the Bellman's equation, with its unique solution V' = V3
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3 main approaches :
@ value iteration
@ policy iteration

@ linear programming
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An lterative approach on value function

or equivalently

Vn+1 = mfx{Ra +’YPaVn};

until [|Vyp1 — Vol <€

Vs €S Vnia(s) = max{r(s,a) + v > P(s' | s,a)Va(s)}
s'eS

V,, converges toward V;‘, YWo € R

T, converges toward 7*, YV € R
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An iterative approach on policies

until w41 = 7,

Tnt1 = argmax{ R, + yP,V™"},
a

fast convergence toward 7*, Vpig
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Solve :
with :

m‘jn Z V(s)

seS

s’'eS

Polynomial in S, A

«O>» «(Fr «Zr «E» = Q>
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Value function approximation

We have seen exact methods where optimal value functions are exactly
computed.

In practice, for large-size problems, the perfect representation of these
functions is impossible.

We need to approximate these functions (Bertsekas and Tsitsiklis 1996)
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Value function approximation

Important result :
V from S to IR, and 7 a policy "greedy" w.r.t. V :

VseS W(s)—argmax{ (s,a +’yZP5 |s,a)V(s')}
s'eS

Then
vy = Vil < — ||V A

This justifies the search for a good approximation of the optimal value
function
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@ linear approximation with features

Ve(s) = €(1)¢ha(s) + - - &(K) vk (s)
where () are K features from S to R

@ non linear approximation, neural networks
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Value function approximation

Approximate value iteration algorithm :

Vi =A (mgx{Ra + P, Vn}) )

until [|Vop1 — Vil <€,
where A is a projection operator on the set of approximate value functions

Approximate policy iteration algorithm :
- Approximation : compute V), an approximation of V7
- Improvement :

Tl = argTax{Ra +vP,Vy},

One can show that

lim ||V — V|| < Tim [[Vi — V2|
n—oo

2y
T (12
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What's new ?

Reinforcement Learning goes beyond dynamic programming in two ways :

@ learning an optimal policy from experience
(state,, action,, state,1, reward,)

@ solving decision problems with large dimensions by parameterizing
value functions or policies.

(Sutton and Barto 1998)
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3 types of machine learning

Supervised learning Unsupervised learning
@ learning from a teacher @ learning from similarities
o with labelled exemples @ with unlabelled exemples
@ generalizing o finding structure

Reinforcement learning
@ learning by interaction
o with trial and error

@ optimizing behavior

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019
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Real-Time Dynamic Programming

RTDP algorithm : learning the optimal value function with value iteration,
with update in the current state :
After each transition,

(SI‘M an, Sn+1, I’n)

Vn+1 <~ Vn
Vir1(sn) < max{r(sn,a)+7)_p(s' | sn,a)Va(s')}

S/
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constraint)

Current state s, is the resulting state of the last transition (real-time

The choice of a, is directed by the current value function V,, :
Optimistic algorithm

an = argmax{r(sn,a) +v>_p(s' | sn,a)Va(s')}
a s/
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The MDP model is estimated on-line

p(s'ls,a) «

s/
s,a

s,a

'n

«O>» «(Fr «Zr «E» = Q>

r(s,a) «
and a, visits A (exploration)



(Watkins 1999)

No use of the MDP model

Learning of the optimal value function following value iteration principle
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The Q-value function

Without model, V* is not sufficient to define the corresponding optimal
policy
©*(s) = argmax{r(s,a) + v _p(s' | s,a)V*(s')}
a 5/

We thus try to learn the Q-value function :

Q*(s,a) = r(s,a) +7)_p(s'| s, a)V*(s)

S/

We have

m*(s) = argmax Q*(s, a) et V*(s) = max Q*(s, a)
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p q

s, I p s, ak g

Q*(s,a) = r(s,a)+{pV*(s) + (1 - p)V*(s")}

Q*(s,d) = r(s, a)+7{aV(s) + (1 - q)V*(s")}
*(s) = argarzax{Q*(s, a), Q*(s,a)}
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Q-Learning principle

Value iteration

Qn(s,a)
Vori(s) < mgx{r(s,a)+72p(5'|5, a)Va(s')}
= Qnri(s,a) = r(s,a)+7)_p(s |5, a)Vas1(s)}

sl

Qnia(s,a) « r(s;a)+7 ) p(s'| 5,a) max Qn(s', &)

s

For the pair (sp, a,), we estimate the sum by

rn+ 7y max Qn(snt1,d)
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After each transition,

(sm an, Sn+1, rn)

Qn+1 — Qn
O0p — I+ Y maa,X Qn(5n+1, a/) - Qn(sn, an)

Qn+1(5na an) — Qn(sn, an) + anbp

with limy_o0 ap = 0 (e.g. L ou -1)

Ns a
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Stochastic approximation and Q-learning

Bellman equation :
Vi(s) = max Y p(s' | s.a){r(s. a,8) + Y V(). Vs
Equivalently,
Vi(s) = max Q*(s,a), Vs
Q*(s,a) = > _p(s'|s a){r(s,a,s)+ymaxQ*(s',d)}, Vs,a
s’ o

Q*(s,a) = E[r(s,a,s)+ymaxQ*(s',a)], Vs,a
a/
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Stochastic approximation and Q-learning

Let £ = (s,a,r,s'), and H(Q,&)s,» = (r + ymaxy Q(s',d’) — Q(s, a))
Then

E[H(Q", &) =0

The Robbins-Monro algorithm gives directly

Qn+1 = Qn + OénH(Qna 5n)

that is

Qn—i—l(sna an) = Qn(sna an) + an(rn + v m;)x Qn(sn—&-la a,) - Qn(sna an))
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For a good decrease rate of a, to 0 (e.g. + ou
probability = 1.

1
pairs of S x A are infinitely visited, then Q Iearnlng converges to Q* with

n,

-), and if all state-action
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The Exploration / Exploitation dilemna

Le choix de |'état est souvent lié a la dynamique.
Pour I'action, une démarche optimiste consiste a choisir a chaque itération
la meilleure action courante

ap = argmax Q(sp, a)
a
Plus raisonnablement, il convient de régulierement choisir une action

aléatoire dans A.
On utilise ainsi des fonctions d’exploration dirigées ou non-dirigées
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Fonctions d'exploration non-dirigées

@ suivre Q, pendant Np transitions, puis tirer uniformément dans A
pendant N transitions

@ a chaque itération suivre @, avec une probabilité 7, ou tirer
uniformément dans A avec une probabilité 1 — 7
@ tirer a, dans A selon
_ Qn(sn,a)
T

e

pT(a) = Qn(sn,a’)

Ty T

avec T — 0
o
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Guided exploration policies

On utilise I'information accumulée au cours de la recherche, autre que Q.

En pratique, on ajoute a @, un bonus d’exploration et on choisit la
fonction qui maximise cette somme.
Exemple de bonus

e la recency based method : Qy(s,a) +ev/(Ts.)
Ts,5 est le nombre d'itérations depuis le dernier choix de a dans s

e la uncertainty estimation method : Qn(s,a) +¢/ns ,

e UCBL1 (regret minimization) : Qn(s, a) + \/2log(n)/(ns a
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On-Policy and Off-Policy learning rules

Dans le Q-learning, la politique d'exploration intervient juste pour générer
les expériences & = (Sp, an, n, Sn+1) (Off-policy)

Qn—l—l(sn; an) = Qn(sna an) + an(rn + 7y mﬁx Qn(5n+17 a/) - Qn(sm an))

L'algorithme SARSA adapte la régle d'apprentissage en prenant en compte
explicitement la politique d’exploration et I'action a,11 (On-policy) :

Qn+1(5na an) = Qn(sna an) + an(rn + rYQn(SnJrla anJrl) - Qn(sna an))

Sarsa converge également vers Q*
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Joint learning of a value fuction and a policy

Dans le Q-learning, la politique apprise est directement liée a la fonction @
apprise.

Il est aussi possible de gérer explicitement une suite de politiques 7, et une
suite de fonctions de valeur V),. On suit alors le méme principe que dans
I"algorithme de policy iteration
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Principe des actor-critic methods

On maintient 7, (action network) et V,, (critic network)
Aprés chaque transition (sp, an, Sp+1, n)

o (p(s'|s,a) et r(s,a) sont mis a jour)
@ V), est mise a jour

@ 7, est améliorée

Est souvent associé a une représentation paramétrée de V,, et m, (voir plus

loin).
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La valeur normale de V,, devrait étre V. . Différentes méthodes
permettent de I'approcher

@ maximum de vraisemblance : calcul de V;, sur la base des estimées
p() et r(); peu efficace

@ Monte Carlo

@ Programmation Dynamique
e TD(\)

«4O> «Fr «=>»
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Dans le cadre v = 1 avec état absorbant
Pour une politique 7 fixée
On observe (sp,...,sy) et (ro, ..., rn—1)

O A o OO
O m J jm

\Q

Y

O
/‘k,()
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Algorithmes off-line / on-line

A la fin de chaque trajectoire, on met a jour les N valeurs V(sy) par

V(sk) < V(sk) +a(r + res1 + -+ rv—1 — V(sk))

On peut aussi modifier V' aprés chaque transition (sk, Sk+1, rk), €n
utilisant les différences temporelles :

et e+ o+ v — V(sk) = die+ diyr + -+ dva

avec

de = rp + V(Sk+1) — V(Sk)

V(S/)<— V(s/)—l—adk, 1=0,...,k

F. Garcia (INRA MIAT)
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La méthode de la programmation dynamique

On peut aussi chercher a résoudre stochastiquement le systéeme
d’équations linéaires définissant V :

V(s) = r(s,m(s)) + D _p(s' | s,7(s))V(s)}

Aprés chaque transition (sk, Sk+1, rk)

V(sk) <« V(sk)+ a(rk + V(sk+1) — V(sk))
—  V(sk) + adg

F. Garcia (INRA MIAT) introduction to RL and spiking neurons November 29, 2019

82/135



La méthode des différences temporelles (TD()))

TD(A) est un compromis entre les deux précédentes méthodes
Pour une trajectoire observée (sp, ..., sy) et (ro,

..., ry—1) la fonction de
valeur courante V est mise a jour selon

m=N-1
V(sk) < V(sk)+a > AN dn, k=0,...,N-1

m=k

@ )\ =0 : méthode de la programmation dynamique
@ A\ =1 : méthode de Monte Carlo

La convergence presque siire est assurée.
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(A,0,B,0) (B.1)

(B.1) (B.1)
(B.1) (B.1)
(B.1) (B.0)

Que vaut V(B)? et V(A)?
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° V(B)z%

e V(A) ~ 0 pour Monte Carlo
o V(A) ~ 2 pour TD(0)

Monte Carlo minimise |'erreur quadratique sur les observations.
TD(0) maximise la vraisemblance de I'estimation.
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Aprés chaque transition (sk, Sk+1, k),

V(s)) < V(s)) +aX<"d,, 1=0,
de trace d’éligibilité.

ok
On utilise surtout une forme similaire de cet algorithme utilisant la notion

V(s) < V(s) + az(s)dk

Vse S
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Vse S
YAZp—1(5) si s # sp
Zn(S) ’)’)\Z,, 1(5) +1

sis=s,

-
n
‘ dates des visites de I'état s
n
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Zo(S =0, Vse 5
zp(s)

{ znl

si s # s,
sis=-s,

n
‘ dates des visites de I'état s
n
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TD()\) et Q-learning

Si TD(A) est utilisé dans les méthodes de type policy iteration pour
évaluer une politique, il peut aussi étre utilisé pour améliorer le Q-learning
Apres chaque expérience, ou transition (s, an, Sp+1, fn)

z, <« 0sia, # argmax Qn(sy, a)
a
zn(Snyan) < zn(sp,an) +1
on +— m+ Y maéx Qn(5n+17 a,) - Qn(sm an)
Qni1(s,a) +  Qn(s,a) + anzn(s,a)dn
zpii(s,a) < YAz(s, a)
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@ Introduction

© Sequential decisions

© Markov Decision Problems
@ Reinforcement Learning
© Generalisation in RL

@ RL with spiking neural networks
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Représentation de la fonction de valeur

Pour des problémes discrets de faibles tailles, il est possible de représenter
V =V"ou V =V* (ou Q) par un tableau état :valeur (look-up table).
L'apprentissage de V porte alors directement sur ses composantes.

Pour des probléemes de grande dimension ou a domaines continus, il est
nécessaire de passer par une représentation parameétrée

V:V§OUQ:Q§

ou & est un vecteur de paramétres de plus faible taille.
L'apprentissage porte alors sur &

€n+1 = fn + QA(Sny an, Spn+1, rn)
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Caractéristiques d'une architecture

la capacité d'approximation : on cherche a minimiser I'erreur intrinséque
e = ming |V — Ve ;

la capacité de généralisation : on recherche des ¢ de faible dimension
minimisant € = les valeurs de plusieurs états seront
simultanément modifiées avec la présentation d'un seul
exemple;

la simplicité de I'évaluation : selon la paramétrisation retenue, le calcul
pour un état s € S de Vg(s) peut étre plus ou moins
coliteux ;

I'efficacité de I'apprentissage : selon &, la convergence n’est plus toujours
assurée, et les algorithmes peuvent devenir trés complexes.
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» réseaux neuronaux
> .

@ représentations différentiables
> linéaires

@ représentations non différentiables
» arbres de régression,

» reégles de décision
> ...
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Représentations différentiables

Il est naturel ici d'utiliser des méthodes de type descente de gradient
stochastique pour apprendre le vecteur de parametres &

§n+1 = gn + Oén(Rn - Vén(sn))vgn Vgn(sn)
ol R, est I'estimation directe tirée de I'expérience de la valeur de V en s,
(cf. Monte Carlo, TD(0) et TD())).

Dans le cas général, seul Monte Carlo assure que cette régle de mise a jour
converge vers un optimum local pour

€(€) = > _(V(s) = Ve(s))?

seS
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Les représentations linéaires

Ve(s) = £(1)¢a(s) + - - (K)o (s)

ou les 9;() sont K fonctions de S dans R

Ve, Ve, (sn) = (1(sn), -, ¥r(sn))T

entraine
§n+1(i) = fn(’.) + an(Rn - an(sn))¢i(5n)7 Vi=1,...,K

Il existe un optimum unique £* pour I'erreur quadratique, et TD(\)
converge nécessairement (mais non forcément vers £*)
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Les fonctions de voisinage

On définit K régions R; qui forment ensemble une couverture de S, et on
pose pour i =1,..., K 9;() = 1g,() la fonction indicatrice de R;

Vsc S ¢i(5):{ 1 siseR;

0 sinon

Exemple : state aggregation, ou les R; forment une partition de S.
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La méthode des CMAC
(cerebellar model articulator controller)

Méthode simple utilisée pour des espaces
continus de faible dimension
Principe : définir C partitions (ou grilles) de

S, décalées géométriquement les unes par ::(i:::::
rapport aux autres N
A chaque région de chaque grille, on associe e N

un poids £(7). La valeur d'un état s de S est
la somme des C poids des régions de chaque
grille qui le contiennent.
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On place K points s; dans S, centres d'une région

La forme de la région est fixe, les recouvrements sont possibles

«AO> «F)>r «=)r « =)
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Les méthodes a base d'états représentatifs

On peut aussi associer une valeur réelle dans l'intervalle [0, 1] fonction de
la distance au centre.

Exemple : les radial basis functions

Is — sill

VseS i(s) =exp(— 52 )

On peut alors apprendre aussi les meilleurs paramétres s; et o;
(architecture non-linéaire)
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On triangularise S C R” par les points s;

On définit la fonction de valeur V¢(s) en tout point s comme la
combinaison linéaire

Ve(s) = As. (S)Ve(si)) + -+ As. (s¥Ve(sp)) = =+ = 2ac




Les fonctions coordonnées

On projette S dans un sous-espace R¥, en définissant K nouvelles
coordonnées fonctions des anciennes.

Les nouvelles coordonnées résument le mieux possible les propriétés d'un
état vis-a-vis de la tache a apprendre.

Exemple : Tétris. h x [ variables d'états binaires = 2/ + 1 coordonnées

@ les hauteurs hy des | colonnes

les différences | hx — hyi1 |

la hauteur maximale du mur maxy hy

le nombre de trous dans le mur
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Les fonctions heuristiques

Permet d’exploiter la connaissance de stratégies répondant partiellement
au probléme

Les 1i() sont les fonctions de valeur associées a des politiques obtenues
par expertise ou par une premiere résolution approchée.

Ve(s) = £(1) Vi (s) + - - - £(K) Vi (5)

Les V., est estimées par simulation, et elles-méme paramétrées
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Approximations non-linéaires :
le perceptron multi-couches

L'architecture non-linéaire aujourd'hui la plus employée en apprentissage
par renforcement.

poids wjj poids ok

] **%*\
entrées ; @ | / sortie
I

Pour un état s = (s(1), ..., s(i), ...), V(s) est approchée par
Ve(s) = Zwka (Zwkﬂ-s(i))
k i

avec (par exemple)
1

oc(x)=———
(x) 1 + exp(—x)
Les perceptrons multi-couches sont une généralisation de ce principe avec

des réseaux ou s'enchainent couches linéaires et couches sigmoidales.
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Apprentissage du perceptron multi-couches

poids wjj poids wk

™,
L

—— sortie

entrées - - -

—i
B
b

Le vecteur  est constitué des poids wj, wj, . ..du réseau.
L'apprentissage de ces poids est réalisé a partir de la regle de gradient.
Le calcul du terme de gradient V¢,V est effectué par des techniques de
rétro-propagation au sein du réseau.

Il existe de nombreux algorithmes d’apprentissage par renforcement
couplant Q-learning et/ou TD(\) avec un perceptron (cf. deep RL).
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Apprentissage de structures non-différentiables

Toutes les structures des représentations précédentes doivent étre adaptées
a la tache a apprendre.

Il existe quelques algorithmes d’apprentissage par renforcement cherchant
a apprendre une telle résolution spatiale optimale.

Les méthodes de gradient ne sont plus adaptées : gradient tree boosting,
algorithmes évolutionnaires, etc.
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Calcul en ligne des politiques

Pour des problemes de grandes dimension, le passage exacte en fin ou en
cours d’apprentissage de V ou Q vers a ou 7 peut &tre trés coliteux et
doit étre approché :

#(s) = argmin Q,(s, a)

— argmin 3" p(s' | 5. a){r(s, a,5) + VL (s)}
a SI

N
1
= argmin D {r(s.a.0) + 2 Va(s)
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horizon H > 1 (Roll-out)

On peut également approcher 7 uniquement pour I'état courant, sur un
S3
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Iterative allocation of simulations

Possible pathology of the simulation-based forward search

Error
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Policy approximation

Il est toutefois souvent intéressant d'approximer
mh(s) = argmax Qy(s, a)
a
par une fonction paramétrée (action network)
Tp = T9,

La dynamique de 6, peut étre alors étre plus ou moins entrelacée a celle
de V,, ou Q, (actor-critic architecture).
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Policy parameterization my(s), with § € © C RP
performance

@ we look for optimal parameters §* that optimize the expected

J(0*) = max Ve,

@ based on observed trajectories following my obtained by simulation
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We typically consider stochastic policies, like :
For instance :

mo(s) = a with probability q(a | s;0) Vs
q(a | s; 9) — 95,3

Zb es,b’

with

0s2>0
o expl.g(s,a)
q(a | S, 9) - Zb exp 9.¢(5a b)

¢(57 a):(d)l(S? a):"*7¢P(57 a))
<Oy <@ <=r» <2» ET DAl



Policy gradient and one-step MDP

One step MDP (T = 1), random initial state following 1(s)

J(0*) = meax E[r(s,a,s")]

Score function method

VE[r(s,a,s)] =

sas

VY us)alalsi0) ('|s,a>f(5’a’sl)]

Vq(als; 0) . o
Z [q(a|s;9)r(s’ a,s )} wu(s)q(als; 0)p(s'|s, a)

[WW& a, s’)} .
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With g(a | s;0) = _oxpb.g(s.a)
b

Z exp 0.¢(s,b) :
1

dq(als;0) - .
q(als;0) 06; oi(s, a) ¥¢'(s’ b)q(b|s; #)
thus

Vaq(als; 0) os.2)

q(als; 9)

Zq bls; 0)¢(s, b)



Policy gradient and MDP

Horizon T > 1

J(0%) = max E[r(so,a0,51) +7r(s1,a1,5) + -+ tr(st_1,ar_1,57)]

A similar approach leads to

- t L t = Vaq(ay|se; 0)
t=0 t=0 =0 q(at’|5t’v 9)

Make possible sampling approaches and online methods with trace
eligibilities
_ < Va(av|se; )
=) .
= dlav|sy:0)
Many policy gradient algorithms!
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Policy gradient and MDP

Infinite horizon, Bellman equation :

= qlalsi0) Y _p(s'ls, a)(r(s,a,8") + 1 Ve(s"))

Then we have

[e.e]

Vq(at|st;
VV(s) = E ny Valadseif) o o o = s
at‘sty )

thus

vJO) = Z# )V Vi(s

— Z“e )Y Vq(als; 0)Qu(s, a)
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Actor-critic methods

Use of an approximate value function Q, (s, a), estimated during
simulation
Compatibilty criterion between parameters w and 6

Va(als;0)
VQu(s,a) = ——+
52 = a(als:0)
; ; .0y — _expbo(sa) .
For instance with g(a | s;0) = S ew0.0(s.b)

Qufs:3) = (6(s:3) = 3 bl 0)o(5.5)

Q. linéaire en ¢;
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Deep Reinforcement Learning

Outperforms all previous state-of-the-art methods

@ neural networks to estimate Q,, or 7y

Maxim Lapan

@ unstable : target network, experience replay,

Deep
asynchronous methods Reinforcement
i Learning
@ deep Q-learning (DQN, ...) Hands-On

@ deep policy gradient and actor-critic
methods (DDPG, A3C, ACER, ...)
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Spiking neurons

@ next generation of neural networks

@ biologically realistic models of neurons s wins W

@ discrete events rather than continuous —
_—
values ; S
@ many neuronal models : ( Neuron
Hodgkin-Huxley (micro), Leaky
Integrate-and-Fire, Spike Response gk

Model, Thorpe Model (macro), etc.
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Leaky integrate-and-fire neurons

Voltage membrane potential v, excitatory input current /

dv(t)
dt
When v reaches a threshold v, the neuron fires a spike and v is reset to

Vrest -
A synaptic model of the excitatory input current / of a neuron :

() =>"w > e(t—1tf)
j f

= Vyest — V() + R.I(2)

Tm

where w; is the connection strength of the synapse from neuron j, tf the
firing times and €() the time response of the spike.
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Learning in spiking neural networks

Like for traditional neural networks, and more generally for learning
systems, 3 different learning paradigms :

@ supervised learning

@ unsupervised learning

@ reinforcement learning
Explicit time dependence, asynchronous information processing, make

learning procedures more complex than for the classical perceptron
approach.

Promising results for unsupervised and supervised deep learning with
spiking neural networks
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Hebbian learning vs backpropagation

"Hebbian rule : when an axon of cell A persistently takes part
in firing cell B, some growth process or metabolic change takes
place to increase A's efficacy as one of the cells firing B." -
Donald Hebb, 1949
@ Hebbian learning corresponds to an unsupervised setting : no need of
external target
@ supervised learning relies typically of gradient based descent, to
modify synaptic weights with back propagation in order to minimize
the error between the network output and the desired target.
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STDP- Spike-Timing Dependent Plasticity

directly inspired by Hebb's law.

synaptic changes dependent on the
relative timing of pre and post
synaptic spikes

with a learning window

750 40 30 20 10 0 10 20 30 40 50

Aw; =D "> W(t"—t)
f n

online implementation with traces

dz dz
T+d—; =~z +A+Zf:5(t— tf) and -

many variants of STDP models
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STDP and Reinforcement Learning

How to model synaptic changes considering a global reward signal ?
Few propositions in the litterature for RL and spiking neuron networks,
more or less related to STDP (Gerstner 2000, Seung 2003, Xi & Seung
2004, Florian 2007, Takita & Hagiwara 2005, El-Laithy & Bogdan 2011,

etc.)
The difficulties are :

@ how to take into account the credit assignment problem ?
@ how to obtain a local biological plausible learning rule ?

Modulated STDP, with eligibility traces for hebbian learning and additional
"gating signals" like rewards, leads to "neo-hebbian three-factor" learning
rules (Gerstner at al. 2018)

Awj; = azjr
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Back to MDP and RL frameworks

With STDP reinforcement learning, we want to learn the optimal synaptic

strengths wj; when every neuron is an agent, and there is a global reward
r+ for the whole network

The classical MDP and RL frameworks must be extended, e.g. :
e TMDP, SMDP, GSMDP for time-dependence
o DEC-MDP for decentralized decison-making
@ GMDP for graph-based representation
@ POMDP for partially observable states
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POMDP framework

e MDP for state (x) - action (u) -
probabilistic dynamics — | acionu
e reward r(x) =]

@ observation distribution v, (x)
prob. of observing y in state x

@ stochastic policy py(y) prob. of
choosing action u for
observation y

e Parameterized policy py(y) = p(6,...)

e we want to maximize J(0) = lim,_,o Ep [% >or—1 r(st)}
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Direct RL approach (OLPOMDP, Baxter & Bartlett)

@ the trace
V,Uut(}/t, 9)

Poue (Ve 0)

converges to a good estimate of VJ(#) when f close to 1

Zt+1 = ﬁzt =+ ) with 5 € (07 1)

@ online approach :
Oi+1 = 60+ + arrzer1, with o small learning rate

o still valid in a multi-agent framework :

: - Vi (v, 07)
G T AN

u ?
tr1 = Ortanz
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A very simple spiking neural model

N AN
— N\ e
Presynaptic Connection .
activity, strength, N we (0,1},
W €{0,1} wj Pr(u = 1) = o(v)
Potential,
V=3, u

Activity,

Stochastic spiking neuron model :
@ Actions : u; = 1 fire at time t, otherwise u; =0
e Potential v; = Y3, wju_,
— w; is the connection strength of jt synapse
— u)_, is the activity of j presynaptic neuron

e Firing probability P(us = 1) = o(v) = m
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W € {0,1)

e w
local RL rule :

Zity1 = Pzie+ (ur - U(Vt))U{:—1
Wit+l = Wi+ QrZjeyl
Very similar to reward modulated STDP (cf. works by Florian

et al.).
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With the Spike Response Model (SRM)

A more realistic neuron model with memory of past inputs

vi(t) = mi(t — &) +ZW,JZe,J —t,t—t)

where #; is the last spike and 7; the refractory response.
The neuron fires stochastically with

P(u'(t) = 1) = pi(vi(t) - 0;)

(escape noise model), with p; the firing intensity (probability density)
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With the Spike Response Model (SRM)

In continuous time, we obtain from OLPOMDP (Florian 2007) )

dW,"(t) B B
I~ ar(t)z(e)
P90 )+ (0
§i(t) = ((Z((:)—lp, Zeu —tt—t))

where ®;(t) = Y, 8(t — tf) is the post spike train
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With the Spike Response Model (SRM)

If a spike at t{ follows a spike at tjf, Az at tf with

Loi(th) o r s o
Az = ——"LZei(t] —ti, t; —t
e T )

After a complete decay, with a constant r,

Aw = arAzr,

Synaptic changes are modulated by the reinforcement signal r(t)
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modulated STDP with eligibility trace

With some additional simplifications, with an exponential learning window :

CMC"IJ't(t) = ar(t)z;(t)
Tzdzcui.t(t) = —z;(t) + &(1b)

() = 0i(DALY exp(— DA- 3 erpl-
f

Dropping the eligibilty trace :

W) _ o (e)e (o)

which has to be compared to the standard STDP model

dw;(t)
dt

= aj(t)
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Conclusions

interesting perspectives for deep RL with spiking neural networks
RL might provide some cues for better understanding biological NN
need to integrate hierarchical network representations

discrete event system modelling and simulation could help in
analysing neural plasticity
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2020 M2 internship

Modeling plastic spiking neural networks
using discrete event simulators

Supervisors: Frédérick Garcia (DR INRA at MIAT), Gautier Quesnel (CR INRA at MIAT),
Alexandre Muzy (DR CNRS at [35) and Timothée Masquelier (CR CNRS at CERCO).

This internship will be a collaboration between F. Garcia, G. Quesne] A Muzy (all experts in
discrete event si ) and T. lier (expert in comp and spiking
neural networks).

Organization: The main lab for this project is the MIAT. The candidate will also frequently visit
the CERCO. We will do one online meeting per week, and one face-to-face meeting per month.

Duration: 5 months.
Starting date: early 2020.

Here we want to use the Discrete Event System Specification (DEVS) framework to model and
simulate SNNs, as in ref. . A DEVS model of SNNs can be specified to catch temporal mechanisms.
Each DEVS neuron interacts with others according to external changes in input-output potentials
(spikes) and based on their internal changes in membrane potentials. The last relative time
between two changes (or computations) can be formally encoded by each neuron. The temporal
activity patterns of these changes can then be modeled hierarchically and analyzed.

We will incorporate the synaptic plasticity rule known as spike-timing-dependent plasticity
(STDP) in our DEVS model, which has never been done before. STDP is a now well-established
physiological mechanism of activity-driven synaptic plasticity. According to STDP, synapses are
reinforced (respectively depressed) when a presynaptic spike arrives before (respectively after)
a postsynaptic one? In other words, a neuron reinforces the connections with the afferents that
contributed to triggering a postsynaptic spike, in agreement with Hebb's postulate®.
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